亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic T Staging Using Weakly Supervised Deep Learning for Nasopharyngeal Carcinoma on MR Images

人工智能 接收机工作特性 鼻咽癌 Python(编程语言) 计算机科学 机器学习 深度学习 试验装置 人口 医学 放射科 阶段(地层学) 放射治疗 古生物学 操作系统 环境卫生 生物
作者
Qing Yang,Ying Guo,Xiaomin Ou,Jiazhou Wang,Chaosu Hu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (4): 1074-1082 被引量:26
标识
DOI:10.1002/jmri.27202
摘要

Background Recent studies have shown that deep learning can help tumor staging automatically. However, automatic nasopharyngeal carcinoma (NPC) staging is difficult due to the lack of large and slice‐level annotated datasets. Purpose To develop a weakly‐supervised deep‐learning method to predict NPC patients' T stage without additional annotations. Study Type Retrospective. Population/Subjects In all, 1138 cases with NPC from 2010 to 2012 were enrolled, including a training set ( n = 712) and a validation set ( n = 426). Field Strength/Sequence 1.5T, T 1 ‐weighted images ( T 1 WI ), T 2 ‐weighted images ( T 2 WI ), contrast‐enhanced T 1 ‐weighted images ( CE‐T 1 WI ). Assessment We used a weakly‐supervised deep‐learning network to achieve automated T staging of NPC. T usually refers to the size and extent of the main tumor. The training set was employed to construct the deep‐learning model. The performance of the automated T staging model was evaluated in the validation set. The accuracy of the model was assessed by the receiver operating characteristic (ROC) curve. To further assess the performance of the deep‐learning‐based T score, the progression‐free survival (PFS) and overall survival (OS) were performed. Statistical Tests The Sklearn package in Python was applied to calculate the area under the curve (AUC) of the ROC. The survcomp package was used for calculations and comparisons between C‐indexes. The software SPSS was employed to conduct survival analysis and chi‐square tests. Results The accuracy of the deep‐learning model was 75.59% in the validation set. The average AUC of the ROC curve of different stages was 0.943. There were no significant differences in the C‐indexes of PFS and OS from the deep‐learning model and those from TNM staging, with P values of 0.301 and 0.425, respectively. Data Conclusion This weakly‐supervised deep‐learning approach can perform fully automated T staging of NPC and achieve good prognostic performance. Level of Evidence: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;52:1074–1082.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
9秒前
Eve发布了新的文献求助10
10秒前
SUN完成签到,获得积分0
13秒前
领导范儿应助冬天该很好采纳,获得10
46秒前
57秒前
1分钟前
djdh完成签到 ,获得积分10
1分钟前
下文献的蜉蝣完成签到 ,获得积分10
1分钟前
CodeCraft应助黎屿采纳,获得10
1分钟前
1分钟前
1分钟前
黎屿发布了新的文献求助10
1分钟前
George完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
丸子完成签到 ,获得积分10
2分钟前
2分钟前
yangzai完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助世隐采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
何琳发布了新的文献求助10
3分钟前
3分钟前
Richardisme完成签到 ,获得积分10
3分钟前
mmyhn发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
4分钟前
世隐发布了新的文献求助10
4分钟前
简因完成签到 ,获得积分10
4分钟前
mmyhn完成签到,获得积分10
4分钟前
4分钟前
gwbk完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015704
关于积分的说明 8871660
捐赠科研通 2703398
什么是DOI,文献DOI怎么找? 1482265
科研通“疑难数据库(出版商)”最低求助积分说明 685172
邀请新用户注册赠送积分活动 679951