麦芽糊精
普鲁兰
白藜芦醇
化学
Zeta电位
乳糖
材料科学
纳米技术
色谱法
食品科学
喷雾干燥
有机化学
多糖
生物化学
纳米颗粒
作者
P. Shruthi,Heartwin A. Pushpadass,Magdaline Eljeeva Emerald Franklin,Surendra Nath Battula,N. Laxmana Naik
标识
DOI:10.1016/j.lwt.2020.110127
摘要
Resveratrol was encapsulated into proniosomes with the aim of enhancing its applications in food. Maltodextrin, lactose monohydrate and pullulan were used as wall materials for the preparation of resveratrol-loaded proniosomes by thin-film hydration technique. The morphological, microstructural, entrapment and release properties were determined. The wall material had marked (p < 0.01) influence on the shape and hydrodynamic diameter of proniosomes. Maltodextrin-based proniosomes were smooth and spherical shaped while lactose and pullulan-based proniosomes were flaky with sharp edges. The maltodextrin-based niosomes had the lowest hydrodynamic diameter of 168.73 nm, zeta potential of −29.6 mV, entrapment efficiency of 90.11%, and release of 21.8% at 2 h and 78.2% after 8 h in gastric and intestinal conditions, respectively. Fourier-transform infrared spectroscopy and X-ray diffractometry confirmed successful encapsulation of resveratrol. The antioxidant activity of maltodextrin and lactose-based resveratrol-loaded proniosomes was comparable to that of pure resveratrol. From dynamic light scattering, FTIR, in-vitro release, and antioxidant activity studies, it could be concluded that encapsulation of resveratrol as proniosomes would considerably enhance its bioavailability. Milk and yogurt fortified with resveratrol-loaded proniosomes did not exhibit any adverse effect on organoleptic qualities.
科研通智能强力驱动
Strongly Powered by AbleSci AI