An Improved Template-Matching-Based Pose Tracking Method for Planar Nanopositioning Stages Using Enhanced Correlation Coefficient

稳健性(进化) 计算机科学 计算机视觉 人工智能 帧速率 相关系数 参数统计 模板匹配 平面的 跟踪(教育) 固缝 算法 数学 工程类 图像(数学) 统计 机器学习 计算机图形学(图像) 基因 机械工程 生物化学 化学 教育学 心理学
作者
Hai Li,Xianmin Zhang,Sheng Yao,Benliang Zhu,Sergej Fatikow
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (12): 6378-6387 被引量:12
标识
DOI:10.1109/jsen.2020.2977370
摘要

In the development and application of planar nanopositioning stages (PNSs), there is an urgent need to measure pose quickly and accurately. An improved pose measurement method based on template matching that can track in-plane three degree-of-freedom (3-DOF) motion at small scale with high performance is presented in this paper. To achieve higher tracking accuracy and robustness, the problem of pose measurement is first transformed into an enhanced correlation coefficient (ECC) -based parametric image matching problem. Subsequently, an efficient 3-DOF tacking algorithm based on inverse compositional searching strategy is developed in which the update of Hessian matrix caused by the nonlinear warp is avoided to improve the tracking frame rate. A series of simulations and experiments are conducted to evaluate the performance of the proposed method. The results show that the use of ECC can effectively improve the tracking robustness and accuracy, especially for angular measurement, compared to the sum of square difference (SSD) criterion. Besides, the tracking frame rate can be improved by using the developed algorithm even though the correlation function is much more complicated. Finally, application of the proposed method on a nanorobotic system for automatic in-plane 3-DOF alignment is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Williams发布了新的文献求助10
刚刚
打打应助Adan采纳,获得10
刚刚
苏苏完成签到,获得积分10
刚刚
赘婿应助FY采纳,获得10
1秒前
2秒前
爆米花应助友好大树采纳,获得10
3秒前
3秒前
Ava应助虚幻初之采纳,获得10
3秒前
4秒前
畅快沁完成签到,获得积分10
4秒前
嗯嗯完成签到 ,获得积分10
6秒前
筱筱完成签到,获得积分10
8秒前
9秒前
orixero应助PEAR采纳,获得10
10秒前
qqq完成签到,获得积分20
10秒前
10秒前
10秒前
12秒前
12秒前
FY完成签到,获得积分10
13秒前
爱学习的小凌完成签到,获得积分10
13秒前
13秒前
8R60d8应助sfaaeaadefef采纳,获得10
14秒前
15秒前
英俊的铭应助花痴的老太采纳,获得10
16秒前
Ava应助零壹采纳,获得10
16秒前
enli完成签到,获得积分10
17秒前
苹果香菱完成签到,获得积分10
17秒前
18秒前
夏漆发布了新的文献求助10
19秒前
20秒前
20秒前
上官若男应助山丘采纳,获得10
21秒前
李爱国应助HRH采纳,获得10
21秒前
完美世界应助qaw采纳,获得10
23秒前
李爱国应助烂漫的黑猫采纳,获得10
23秒前
英俊的铭应助快乐爱斯米采纳,获得10
23秒前
深情安青应助liuzengzhang666采纳,获得10
23秒前
chi发布了新的文献求助10
25秒前
Philthee完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459643
求助须知:如何正确求助?哪些是违规求助? 3053952
关于积分的说明 9039561
捐赠科研通 2743320
什么是DOI,文献DOI怎么找? 1504760
科研通“疑难数据库(出版商)”最低求助积分说明 695410
邀请新用户注册赠送积分活动 694699