摘要
Rice breeding in China has experienced three major leaps of dwarf breeding, heterosis utilization and green super rice cultivation, accompanied by six important processes: dwarf breeding (the first green revolution), three-line hybrid rice cultivation, two-line hybrid rice cultivation, inter-subspecies heterosis utilization, ideal plant type breeding and green super rice cultivation. The breeding subject ranges from the unique trait of high yield to the complex traits of resistance, high quality and high yield. The breeding concept is gradually upgraded from high yield and quality to the second green revolution concept of "less investment, more output, and better environment". Rice functional genomics achievements have prepared many genes with important utilization values for the second green revolution, and rice breeding is moving towards a new era of design breeding. The genomic selection technology and transgenic technology will help to develop the green super rice for "less pesticides, less fertilizers, water saving and drought tolerance, superior quality and high yield". Here, we summarize the development process of rice genetics and breeding in China, point out advantages and disadvantages of various breeding methods and breeding techniques, systematically introduce the molecular mechanisms on cytoplasmic male sterility, photoperiod-sensitive male genic sterility and indica-japonica hybrid sterility, review the important functional genes related to rice plant architecture, panicle architecture, grain size and nutrient use efficiency, clarify the correlation between yield and heading date, and highlight the important position of China in the rice basic research in the world. In particular, we emphasize the fact that Chinese rice production styles have undergone or are undergoing tremendous changes in recent years, and the breeding concept must also keep pace with the changing production styles. In the future, the hybrid breeding technology should be closely integrated with modern breeding technologies to breed rice varieties that must not only meet the market demand, but also have the natural and healthy characteristics and adapt to the new farming system and methods.