计算机科学
人工智能
目标检测
深度学习
领域(数学)
代表(政治)
对象(语法)
背景(考古学)
特征(语言学)
特征学习
机器学习
视觉对象识别的认知神经科学
学习对象
模式识别(心理学)
地理
数学
法学
纯数学
考古
哲学
政治
语言学
政治学
作者
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
标识
DOI:10.1007/s11263-019-01247-4
摘要
Abstract Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI