Identification of a molecular signature of prognostic subtypes in diffuse-type gastric cancer

转录组 医学 基因签名 计算生物学 病理 肿瘤科 生物 基因 基因表达 遗传学
作者
Seon‐Kyu Kim,Han Jo Kim,Jong‐Lyul Park,Haejeong Heo,Seon‐Young Kim,Sang Il Lee,Kyu‐Sang Song,Woo Ho Kim,Yong Sung Kim
出处
期刊:Gastric Cancer [Springer Nature]
卷期号:23 (3): 473-482 被引量:42
标识
DOI:10.1007/s10120-019-01029-4
摘要

Abstract Background Although recent advances in high-throughput technology have provided many insights into gastric cancer (GC), few reliable biomarkers for diffuse-type GC have been identified. Here, we aim to identify a prognostic and predictive signature of diffuse-type GC heterogeneity. Methods We analyzed RNA-seq-based transcriptome data to identify a molecular signature in 150 gastric tissue samples including 107 diffuse-type GCs. The predictive value of the signature was verified using other diffuse-type GC samples in three independent cohorts ( n = 466). Log-rank and Cox regression analyses were used to estimate the association between the signature and prognosis. The signature was also characterized by somatic variant analyses and tissue microarray analysis between diffuse-type GC subtypes. Results Transcriptomic profiling of RNA-seq data identified a signature which revealed distinct subtypes of diffuse-type GC: the intestinal-like (INT) and core diffuse-type (COD) subtypes. The signature showed high predictability and independent clinical utility in diffuse-type GC prognosis in other patient cohorts (HR 2.058, 95% CI 1.53–2.77, P = 1.76 × 10 –6 ). Integrative mutational and gene expression analyses demonstrated that the COD subtype was responsive to chemotherapy, whereas the INT subtype was responsive to immunotherapy with an immune checkpoint inhibitor (ICI). Tissue microarray analysis showed the practical utility of IGF1 and NXPE2 for predicting diffuse-type GC heterogeneity. Conclusions We present a molecular signature that can identify diffuse-type GC patients who display different clinical behaviors as well as responses to chemotherapy or ICI treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ni发布了新的文献求助10
1秒前
隐形曼青应助敏感的芷采纳,获得10
1秒前
ybb完成签到,获得积分10
4秒前
4秒前
快乐的伟诚完成签到,获得积分10
6秒前
搜集达人应助大胆夜绿采纳,获得10
6秒前
6秒前
7秒前
辛勤的无血完成签到,获得积分10
10秒前
11秒前
rookie完成签到,获得积分10
11秒前
11秒前
ni完成签到,获得积分10
12秒前
step_stone给step_stone的求助进行了留言
13秒前
13秒前
荒野星辰发布了新的文献求助10
14秒前
敏感的芷完成签到,获得积分20
14秒前
16秒前
16秒前
17秒前
luoshi应助沐风采纳,获得20
17秒前
安南完成签到,获得积分10
17秒前
香蕉冬云完成签到 ,获得积分10
18秒前
自信安荷发布了新的文献求助200
18秒前
鱼雷发布了新的文献求助10
19秒前
兔子发布了新的文献求助10
19秒前
19秒前
田様应助coffee采纳,获得10
20秒前
20秒前
专注鼠标完成签到,获得积分10
20秒前
LingYing完成签到 ,获得积分10
21秒前
cheche完成签到,获得积分10
22秒前
liushun完成签到,获得积分10
22秒前
caoyy发布了新的文献求助10
22秒前
zzt发布了新的文献求助10
23秒前
25秒前
25秒前
章家炜发布了新的文献求助10
26秒前
脑洞疼应助xfxx采纳,获得10
26秒前
wanci应助茶博士采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824