Crystal symmetry determination in electron diffraction using machine learning

电子背散射衍射 布拉维晶格 衍射 电子衍射 人工神经网络 计算机科学 人工智能 电子晶体学 卷积神经网络 材料科学 同步加速器 结晶学 晶体结构 光学 物理 化学
作者
Kevin Kaufmann,Chaoyi Zhu,Alexander S. Rosengarten,Daniel Maryanovsky,Tyler Harrington,Eduardo Marin,Kenneth S. Vecchio
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:367 (6477): 564-568 被引量:139
标识
DOI:10.1126/science.aay3062
摘要

Accurately determining the crystallographic structure of a material, organic or inorganic, is a critical primary step in material development and analysis. The most common practices involve analysis of diffraction patterns produced in laboratory XRD, TEM, and synchrotron X-ray sources. However, these techniques are slow, require careful sample preparation, can be difficult to access, and are prone to human error during analysis. This paper presents a newly developed methodology that represents a paradigm change in electron diffraction-based structure analysis techniques, with the potential to revolutionize multiple crystallography-related fields. A machine learning-based approach for rapid and autonomous identification of the crystal structure of metals and alloys, ceramics, and geological specimens, without any prior knowledge of the sample, is presented and demonstrated utilizing the electron backscatter diffraction (EBSD) technique. Electron backscatter diffraction patterns are collected from materials with well-known crystal structures, then a deep neural network model is constructed for classification to a specific Bravais lattice or point group. The applicability of this approach is evaluated on diffraction patterns from samples unknown to the computer without any human input or data filtering. This is in comparison to traditional Hough transform EBSD, which requires that you have already determined the phases present in your sample. The internal operations of the neural network are elucidated through visualizing the symmetry features learned by the convolutional neural network. It is determined that the model looks for the same features a crystallographer would use, even though it is not explicitly programmed to do so. This study opens the door to fully automated, high-throughput determination of crystal structures via several electron-based diffraction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助张伟卓采纳,获得10
1秒前
大方念云完成签到,获得积分10
1秒前
luo发布了新的文献求助10
1秒前
inter完成签到,获得积分10
2秒前
2秒前
老实人品牌完成签到,获得积分10
3秒前
张菁完成签到,获得积分10
3秒前
橘子皮完成签到,获得积分10
3秒前
FOOL发布了新的文献求助10
3秒前
Molly完成签到,获得积分10
3秒前
澄碧星林完成签到,获得积分10
3秒前
Random完成签到,获得积分10
4秒前
4秒前
可爱的函函应助斯文弘文采纳,获得10
5秒前
Ava应助李沛书采纳,获得10
5秒前
胖心怡完成签到,获得积分10
6秒前
Leo完成签到,获得积分10
6秒前
Native007发布了新的文献求助200
6秒前
在水一方应助kaixing采纳,获得10
8秒前
9秒前
10秒前
10秒前
Xx完成签到,获得积分10
10秒前
10秒前
WYB发布了新的文献求助10
11秒前
11秒前
Akim应助enen采纳,获得10
11秒前
13秒前
彼方完成签到,获得积分10
13秒前
13秒前
zd发布了新的文献求助10
14秒前
14秒前
疯尤金完成签到,获得积分10
14秒前
15秒前
PCEEN发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Yogita完成签到,获得积分0
16秒前
热木发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977