电子背散射衍射
衍射
电子衍射
鉴定(生物学)
对称(几何)
Crystal(编程语言)
人工神经网络
计算机科学
人工智能
集合(抽象数据类型)
匹配(统计)
材料科学
结晶学
光学
模式识别(心理学)
物理
化学
数学
几何学
统计
生物
程序设计语言
植物
作者
Kevin Kaufmann,Chaoyi Zhu,Alexander S. Rosengarten,Daniel Maryanovsky,Tyler Harrington,Eduardo Marín,Kenneth S. Vecchio
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2020-01-31
卷期号:367 (6477): 564-568
被引量:117
标识
DOI:10.1126/science.aay3062
摘要
Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning-based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification.
科研通智能强力驱动
Strongly Powered by AbleSci AI