Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking

雷公藤甲素 STAT1 药理学 计算生物学 生物 信号转导 细胞生物学 细胞凋亡 遗传学
作者
Xinqiang Song,Yu Zhang,Erqin Dai,Lei Wang,Hongtao Du
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:80: 106179-106179 被引量:70
标识
DOI:10.1016/j.intimp.2019.106179
摘要

Network pharmacology is a novel approach that uses bioinformatics to predict and identify multiple drug targets and interactions in disease. Here, we used network pharmacology to investigate the mechanism by which triptolide acts in rheumatoid arthritis (RA). We first searched public databases for genes and proteins known to be associated with RA, as well as those predicted to be targets of triptolide, and then used Ingenuity Pathway Analysis (IPA) to identify enriched gene pathways and networks. Networks and pathways that overlapped between RA-associated proteins and triptolide target proteins were then used to predict candidate protein targets of triptolide in RA. The following proteins were found to occur in both RA-associated networks and triptolide target networks: CD274, RELA, MCL1, MAPK8, CXCL8, STAT1, STAT3, c-JUN, JNK, c-Fos, NF-κB, and TNF-α. Docking studies suggested that triptolide can fit in the binding pocket of the six top candidate triptolide target proteins (CD274, RELA, MCL1, MAPK8, CXCL8 and STAT1). The overlapping pathways were activation of Th1 and Th2 cells, macrophages, fibroblasts and endothelial cells in RA, while the overlapping networks were involved in cellular movement, hematological system development and function, immune cell trafficking, cell-to-cell signaling and interaction, inflammatory response, cellular function and maintenance, and cell death and survival. These results show that network pharmacology can be used to generate hypotheses about how triptolide exerts therapeutic effects in RA. Network pharmacology may be a useful method for characterizing multi-target drugs in complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
psycho发布了新的文献求助10
刚刚
北河三发布了新的文献求助10
刚刚
拉长的凌旋完成签到,获得积分10
刚刚
lzx完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
一二三完成签到,获得积分10
2秒前
执着的水杯完成签到,获得积分10
2秒前
Orange应助yyyyyqy采纳,获得10
3秒前
善良的焦发布了新的文献求助200
3秒前
5秒前
小致完成签到,获得积分10
6秒前
安ANN驳回了李健应助
6秒前
勤劳的硬币完成签到,获得积分10
6秒前
和尘同光发布了新的文献求助10
7秒前
7秒前
风趣的天奇完成签到,获得积分10
7秒前
Mastar完成签到,获得积分10
8秒前
8秒前
8秒前
丘比特应助火星上香菇采纳,获得10
8秒前
9秒前
无限雨南发布了新的文献求助10
9秒前
思源应助wyc采纳,获得10
11秒前
JamesPei应助忧虑的鼠标采纳,获得10
12秒前
只想发财发布了新的文献求助10
12秒前
晕晕完成签到,获得积分10
12秒前
小核桃完成签到,获得积分20
13秒前
飞翔的梦完成签到,获得积分10
13秒前
pu发布了新的文献求助10
13秒前
科研顺利发布了新的文献求助10
14秒前
14秒前
奋斗的珍完成签到,获得积分10
14秒前
sisi发布了新的文献求助10
14秒前
14秒前
sanmao发布了新的文献求助30
15秒前
温柔野心家完成签到 ,获得积分10
16秒前
16秒前
所所应助3333采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788