Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking

雷公藤甲素 STAT1 药理学 计算生物学 生物 信号转导 细胞生物学 细胞凋亡 遗传学
作者
Xinqiang Song,Yu Zhang,Erqin Dai,Lei Wang,Hongtao Du
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:80: 106179-106179 被引量:81
标识
DOI:10.1016/j.intimp.2019.106179
摘要

Network pharmacology is a novel approach that uses bioinformatics to predict and identify multiple drug targets and interactions in disease. Here, we used network pharmacology to investigate the mechanism by which triptolide acts in rheumatoid arthritis (RA). We first searched public databases for genes and proteins known to be associated with RA, as well as those predicted to be targets of triptolide, and then used Ingenuity Pathway Analysis (IPA) to identify enriched gene pathways and networks. Networks and pathways that overlapped between RA-associated proteins and triptolide target proteins were then used to predict candidate protein targets of triptolide in RA. The following proteins were found to occur in both RA-associated networks and triptolide target networks: CD274, RELA, MCL1, MAPK8, CXCL8, STAT1, STAT3, c-JUN, JNK, c-Fos, NF-κB, and TNF-α. Docking studies suggested that triptolide can fit in the binding pocket of the six top candidate triptolide target proteins (CD274, RELA, MCL1, MAPK8, CXCL8 and STAT1). The overlapping pathways were activation of Th1 and Th2 cells, macrophages, fibroblasts and endothelial cells in RA, while the overlapping networks were involved in cellular movement, hematological system development and function, immune cell trafficking, cell-to-cell signaling and interaction, inflammatory response, cellular function and maintenance, and cell death and survival. These results show that network pharmacology can be used to generate hypotheses about how triptolide exerts therapeutic effects in RA. Network pharmacology may be a useful method for characterizing multi-target drugs in complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
star完成签到 ,获得积分10
刚刚
偷乐发布了新的文献求助10
1秒前
小汪完成签到,获得积分10
2秒前
美亲发布了新的文献求助10
3秒前
刘文宇发布了新的文献求助10
4秒前
ymh完成签到 ,获得积分10
4秒前
Sew东坡完成签到,获得积分10
5秒前
天天快乐应助1111采纳,获得10
5秒前
大文字完成签到,获得积分10
5秒前
里巷完成签到,获得积分10
5秒前
7秒前
元元发布了新的文献求助10
7秒前
小乐完成签到 ,获得积分10
8秒前
俏皮慕凝完成签到,获得积分10
8秒前
雪花驳回了情怀应助
8秒前
9秒前
9秒前
11秒前
111发布了新的文献求助10
12秒前
ymh关注了科研通微信公众号
12秒前
断数循环应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
why发布了新的文献求助10
14秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014