RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method

单倍型 SNP公司 彩虹 计算生物学 遗传学 生物 核苷酸多型性 全基因组关联研究 基因组 进化生物学 遗传关联 单核苷酸多态性 等位基因 基因 基因型 物理 量子力学
作者
Kosuke Hamazaki,Hiroyoshi Iwata
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:16 (2): e1007663-e1007663 被引量:60
标识
DOI:10.1371/journal.pcbi.1007663
摘要

Difficulty in detecting rare variants is one of the problems in conventional genome-wide association studies (GWAS). The problem is closely related to the complex gene compositions comprising multiple alleles, such as haplotypes. Several single nucleotide polymorphism (SNP) set approaches have been proposed to solve this problem. These methods, however, have been rarely discussed in connection with haplotypes. In this study, we developed a novel SNP-set method named "RAINBOW" and applied the method to haplotype-based GWAS by regarding a haplotype block as a SNP-set. Combining haplotype block estimation and SNP-set GWAS, haplotype-based GWAS can be conducted without prior information of haplotypes. We prepared 100 datasets of simulated phenotypic data and real marker genotype data of Oryza sativa subsp. indica, and performed GWAS of the datasets. We compared the power of our method, the conventional single-SNP GWAS, the conventional haplotype-based GWAS, and the conventional SNP-set GWAS. Our proposed method was shown to be superior to these in three aspects: (1) controlling false positives; (2) in detecting causal variants without relying on the linkage disequilibrium if causal variants were genotyped in the dataset; and (3) it showed greater power than the other methods, i.e., it was able to detect causal variants that were not detected by the others, primarily when the causal variants were located very close to each other, and the directions of their effects were opposite. By using the SNP-set approach as in this study, we expect that detecting not only rare variants but also genes with complex mechanisms, such as genes with multiple causal variants, can be realized. RAINBOW was implemented as an R package named "RAINBOWR" and is available from CRAN (https://cran.r-project.org/web/packages/RAINBOWR/index.html) and GitHub (https://github.com/KosukeHamazaki/RAINBOWR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梓铭完成签到,获得积分10
1秒前
1秒前
1秒前
英俊的铭应助Coconut采纳,获得10
2秒前
2秒前
科研通AI5应助王云豆采纳,获得10
2秒前
YM完成签到,获得积分10
3秒前
3秒前
酷波er应助小白采纳,获得10
3秒前
研友_VZG7GZ应助尺素寸心采纳,获得30
3秒前
杏林完成签到,获得积分10
3秒前
我不是阿单完成签到,获得积分10
4秒前
万能图书馆应助超级灰狼采纳,获得10
4秒前
Hello应助大苏采纳,获得10
5秒前
临水思长完成签到,获得积分10
5秒前
康桥发布了新的文献求助10
6秒前
knmno2应助糟糕的铁锤采纳,获得50
7秒前
与闲完成签到,获得积分10
7秒前
7秒前
shieldun完成签到 ,获得积分10
8秒前
陆柒捌发布了新的文献求助10
8秒前
Orange应助ggn采纳,获得10
8秒前
劲秉应助LCMLSM采纳,获得10
8秒前
安详沛萍完成签到 ,获得积分10
9秒前
临水思长发布了新的文献求助10
9秒前
11秒前
顾矜应助康桥采纳,获得10
11秒前
12秒前
桐桐应助晚灯采纳,获得10
12秒前
12秒前
12秒前
zzz发布了新的文献求助10
12秒前
12秒前
深情安青应助轻松小蜜蜂采纳,获得10
14秒前
尺素寸心发布了新的文献求助30
14秒前
15秒前
乐天完成签到,获得积分10
15秒前
16秒前
zy关闭了zy文献求助
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880