Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection

医学 肝细胞癌 比例危险模型 危险系数 肝硬化 内科学 队列 胆红素 接收机工作特性 肿瘤科 胃肠病学 外科 放射科 置信区间
作者
Jianxing Zeng,Jinhua Zeng,Kongying Lin,Haitao Lin,Qionglan Wu,Pengfei Guo,Weiping Zhou,Jingfeng Liu
出处
期刊:Hepatobiliary surgery and nutrition [AME Publishing Company]
卷期号:11 (2): 176-187 被引量:41
标识
DOI:10.21037/hbsn-20-466
摘要

Early recurrence is common for hepatocellular carcinoma (HCC) after surgical resection, being the leading cause of death. Traditionally, the COX proportional hazard (CPH) models based on linearity assumption have been used to predict early recurrence, but predictive performance is limited. Machine learning models offer a novel methodology and have several advantages over CPH models. Hence, the purpose of this study was to compare random survival forests (RSF) model with CPH models in prediction of early recurrence for HCC patients after curative resection.A total of 4,758 patients undergoing curative resection from two medical centers were included. Fifteen features including age, gender, etiology, platelet count, albumin, total bilirubin, AFP, tumor size, tumor number, microvascular invasion, macrovascular invasion, Edmondson-Steiner grade, tumor capsular, satellite nodules and liver cirrhosis were used to construct the RSF model in training cohort. Discrimination, calibration, clinical usefulness and overall performance were assessed and compared with other models.Five hundred survival trees were used to generate the RFS model. The five highest Variable Importance (VIMP) were tumor size, macrovascular invasion, microvascular invasion, tumor number and AFP. In training, internal and external validation cohort, the C-index of RSF model were 0.725 [standard errors (SE) =0.005], 0.762 (SE =0.011) and 0.747 (SE =0.016), respectively; the Gönen & Heller's K of RSF model were 0.684 (SE =0.005), 0.711 (SE =0.008) and 0.697 (SE =0.014), respectively; the time-dependent AUC (2 years) of RSF model were 0.818 (SE =0.008), 0.823 (SE =0.014) and 0.785 (SE =0.025), respectively. The RSF model outperformed early recurrence after surgery for liver tumor (ERASL) model, Korean model, American Joint Committee on Cancer tumor-node-metastasis (AJCC TNM) stage, Barcelona Clinic Liver Cancer (BCLC) stage and Chinese stage. The RSF model is capable of stratifying patients into three different risk groups (low-risk, intermediate-risk, high-risk groups) in the training and two validation cohorts (all P<0.0001). A web-based prediction tool was built to facilitate clinical application (https://recurrenceprediction.shinyapps.io/surgery_predict/).The RSF model is a reliable tool to predict early recurrence for patients with HCC after curative resection because it exhibited superior performance compared with other models. This novel model will be helpful to guide postoperative follow-up and adjuvant therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林月发布了新的文献求助10
1秒前
Grace完成签到 ,获得积分20
1秒前
lixiang发布了新的文献求助10
2秒前
香蕉觅云应助jjjkkk777采纳,获得10
3秒前
3秒前
4秒前
4秒前
fancy发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
chenli900108发布了新的文献求助10
7秒前
华生完成签到,获得积分20
8秒前
moumou完成签到,获得积分10
9秒前
不配.应助耶耶粘豆包采纳,获得20
9秒前
皮皮灰熊完成签到,获得积分10
9秒前
狐狐发布了新的文献求助10
9秒前
zhengmin发布了新的文献求助10
10秒前
10秒前
不配.应助友好寻琴采纳,获得10
11秒前
11秒前
感动花卷发布了新的文献求助10
12秒前
13秒前
细腻平萱发布了新的文献求助10
13秒前
chenli900108完成签到,获得积分20
14秒前
14秒前
14秒前
小白白白完成签到 ,获得积分10
14秒前
moumou发布了新的文献求助20
15秒前
16秒前
科研通AI2S应助伶俐问薇采纳,获得10
17秒前
狐狐完成签到,获得积分10
17秒前
18秒前
大模型应助dw采纳,获得10
21秒前
21秒前
林翳完成签到 ,获得积分10
21秒前
细腻平萱完成签到,获得积分10
21秒前
poki完成签到 ,获得积分10
21秒前
23秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178445
求助须知:如何正确求助?哪些是违规求助? 2829424
关于积分的说明 7971562
捐赠科研通 2490812
什么是DOI,文献DOI怎么找? 1327964
科研通“疑难数据库(出版商)”最低求助积分说明 635361
版权声明 602904