Brain MRI analysis using a deep learning based evolutionary approach

计算机科学 卷积神经网络 判别式 人工智能 模式识别(心理学) 可视化 集合(抽象数据类型) 神经影像学 深度学习 机器学习 神经科学 生物 程序设计语言
作者
Hossein Shahamat,Mohammad Saniee Abadeh
出处
期刊:Neural Networks [Elsevier BV]
卷期号:126: 218-234 被引量:79
标识
DOI:10.1016/j.neunet.2020.03.017
摘要

Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助123采纳,获得10
刚刚
超然度陈完成签到,获得积分10
2秒前
15987发布了新的文献求助50
2秒前
Eric完成签到,获得积分10
2秒前
AuF完成签到,获得积分10
3秒前
甜甜亦巧完成签到,获得积分10
3秒前
研友_5Zl9D8发布了新的文献求助10
3秒前
桐桐应助LL采纳,获得10
4秒前
Eric发布了新的文献求助10
5秒前
少华完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
DyG完成签到,获得积分10
12秒前
亚当完成签到 ,获得积分10
12秒前
王博林发布了新的文献求助10
12秒前
13秒前
SAF发布了新的文献求助10
14秒前
xunmi123完成签到,获得积分10
18秒前
20秒前
所所应助暴躁的依秋采纳,获得10
21秒前
cyr完成签到,获得积分10
21秒前
22秒前
22秒前
黑猫完成签到,获得积分10
22秒前
852应助钟迪采纳,获得10
22秒前
wzt完成签到,获得积分10
23秒前
Rondab应助大牛采纳,获得30
26秒前
666发布了新的文献求助10
26秒前
材料小白完成签到 ,获得积分10
28秒前
28秒前
30秒前
大个应助全球采纳,获得10
32秒前
科研通AI5应助研友_5Zl9D8采纳,获得10
32秒前
高屋建瓴完成签到,获得积分10
33秒前
33秒前
张自信发布了新的文献求助10
33秒前
FDSDK发布了新的文献求助10
34秒前
34秒前
哈哈Ye完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324