Brain MRI analysis using a deep learning based evolutionary approach

计算机科学 卷积神经网络 判别式 人工智能 模式识别(心理学) 可视化 集合(抽象数据类型) 神经影像学 深度学习 机器学习 神经科学 生物 程序设计语言
作者
Hossein Shahamat,Mohammad Saniee Abadeh
出处
期刊:Neural Networks [Elsevier BV]
卷期号:126: 218-234 被引量:79
标识
DOI:10.1016/j.neunet.2020.03.017
摘要

Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lseven完成签到,获得积分10
刚刚
刚刚
fengmian完成签到,获得积分10
1秒前
坚定天佑完成签到,获得积分20
2秒前
3秒前
fangyuan发布了新的文献求助10
3秒前
不太想学习完成签到 ,获得积分10
4秒前
4秒前
Owen应助兜子采纳,获得10
5秒前
5秒前
寒冷怜南发布了新的文献求助10
5秒前
manjusaka发布了新的文献求助20
6秒前
王珺发布了新的文献求助10
7秒前
8秒前
overlood完成签到 ,获得积分10
9秒前
10秒前
tuyfytjt发布了新的文献求助10
11秒前
wangzheng发布了新的文献求助10
11秒前
当当发布了新的文献求助10
11秒前
火火发布了新的文献求助30
12秒前
冷艳薯片发布了新的文献求助20
12秒前
马里奥发布了新的文献求助10
15秒前
科科完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
18秒前
阿宁宁完成签到 ,获得积分10
21秒前
聪慧小霜应助火火采纳,获得10
21秒前
当当完成签到,获得积分20
22秒前
咄咄完成签到 ,获得积分10
22秒前
zhang26xian完成签到,获得积分10
22秒前
23秒前
25秒前
NIUB完成签到,获得积分10
27秒前
27秒前
28秒前
高山七石发布了新的文献求助10
28秒前
郑蒸日上发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447