已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain MRI analysis using a deep learning based evolutionary approach

计算机科学 卷积神经网络 判别式 人工智能 模式识别(心理学) 可视化 集合(抽象数据类型) 神经影像学 深度学习 机器学习 神经科学 程序设计语言 生物
作者
Hossein Shahamat,Mohammad Saniee Abadeh
出处
期刊:Neural Networks [Elsevier]
卷期号:126: 218-234 被引量:79
标识
DOI:10.1016/j.neunet.2020.03.017
摘要

Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一发布了新的文献求助10
3秒前
自然映梦发布了新的文献求助10
4秒前
钱多多完成签到 ,获得积分10
7秒前
繁荣的元灵应助浮浮世世采纳,获得10
7秒前
9秒前
晚上吃什么完成签到,获得积分10
9秒前
自然映梦完成签到,获得积分10
14秒前
dkjg完成签到 ,获得积分10
15秒前
15秒前
16秒前
Lucas应助VDC采纳,获得10
18秒前
随便取发布了新的文献求助10
18秒前
月儿完成签到,获得积分10
20秒前
酷波er应助Humorous采纳,获得10
21秒前
贝尔摩德完成签到,获得积分20
21秒前
meng发布了新的文献求助10
22秒前
hanhan留下了新的社区评论
22秒前
文艺的白猫完成签到 ,获得积分10
23秒前
CipherSage应助曾经山灵采纳,获得10
24秒前
麦咕咕应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得30
25秒前
科目三应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
顺利山柏完成签到 ,获得积分10
25秒前
儒雅的夏山完成签到 ,获得积分10
25秒前
26秒前
慈祥的蛋挞完成签到 ,获得积分10
29秒前
科研通AI6应助lemonyu采纳,获得10
30秒前
drsong发布了新的文献求助30
30秒前
adam完成签到 ,获得积分10
31秒前
32秒前
无敌小宽哥完成签到,获得积分10
33秒前
甜蜜的从灵完成签到,获得积分10
34秒前
BigFlash完成签到,获得积分10
35秒前
WANWAN发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599474
求助须知:如何正确求助?哪些是违规求助? 4685116
关于积分的说明 14837894
捐赠科研通 4668470
什么是DOI,文献DOI怎么找? 2537994
邀请新用户注册赠送积分活动 1505428
关于科研通互助平台的介绍 1470784