Brain MRI analysis using a deep learning based evolutionary approach

计算机科学 卷积神经网络 判别式 人工智能 模式识别(心理学) 可视化 集合(抽象数据类型) 神经影像学 深度学习 机器学习 神经科学 生物 程序设计语言
作者
Hossein Shahamat,Mohammad Saniee Abadeh
出处
期刊:Neural Networks [Elsevier]
卷期号:126: 218-234 被引量:79
标识
DOI:10.1016/j.neunet.2020.03.017
摘要

Convolutional neural network (CNN) models have recently demonstrated impressive performance in medical image analysis. However, there is no clear understanding of why they perform so well, or what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based brain masking (GABM) method is proposed as a visualization technique that provides new insights into the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step, a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA) is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features for brain disease classification. Experimental results show that besides the model interpretability, the proposed GABM method has increased final performance of the classification model in some cases with respect to model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you完成签到,获得积分10
刚刚
1秒前
tiko完成签到,获得积分10
1秒前
岩追研完成签到,获得积分10
1秒前
马美丽完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助song采纳,获得10
1秒前
开心的自行车完成签到,获得积分10
2秒前
淡然乌龟完成签到,获得积分10
3秒前
二十八完成签到 ,获得积分10
3秒前
李李李完成签到,获得积分10
3秒前
paopao完成签到,获得积分10
3秒前
陶小陶完成签到,获得积分10
4秒前
HEIKU应助科研通管家采纳,获得20
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
蝈蝈应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
好困应助科研通管家采纳,获得50
5秒前
违规昵称完成签到,获得积分10
5秒前
5秒前
心灵美的翠完成签到,获得积分10
6秒前
xlz110完成签到,获得积分10
7秒前
阳光的凝冬完成签到 ,获得积分10
7秒前
安一完成签到 ,获得积分10
7秒前
呵呵发布了新的文献求助10
8秒前
10秒前
zhangkaixin完成签到,获得积分20
10秒前
10秒前
东郭井完成签到,获得积分10
11秒前
Clover04应助淼吉采纳,获得10
11秒前
小children丙完成签到,获得积分10
12秒前
飞0802完成签到,获得积分10
13秒前
失眠的红酒完成签到,获得积分20
13秒前
午午午午完成签到 ,获得积分10
14秒前
tang完成签到 ,获得积分10
14秒前
lzxzx完成签到 ,获得积分10
14秒前
zgy1106完成签到,获得积分10
15秒前
一生所爱完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792