已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diabetic Retinopathy Diagnosis Using Multichannel Generative Adversarial Network With Semisupervision

人工智能 计算机科学 深度学习 医学影像学 眼底(子宫) 糖尿病性视网膜病变 生成模型 计算机视觉 模式识别(心理学) 生成语法 机器学习 医学 放射科 糖尿病 内分泌学
作者
Shuqiang Wang,Xiangyu Wang,Yong Hu,Yanyan Shen,Zhile Yang,Min Gan,Baiying Lei
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 574-585 被引量:111
标识
DOI:10.1109/tase.2020.2981637
摘要

Diabetic retinopathy (DR) is one of the major causes of blindness. It is of great significance to apply deep-learning techniques for DR recognition. However, deep-learning algorithms often depend on large amounts of labeled data, which is expensive and time-consuming to obtain in the medical imaging area. In addition, the DR features are inconspicuous and spread out over high-resolution fundus images. Therefore, it is a big challenge to learn the distribution of such DR features. This article proposes a multichannel-based generative adversarial network (MGAN) with semisupervision to grade DR. The multichannel generative model is developed to generate a series of subfundus images corresponding to the scattering DR features. By minimizing the dependence on labeled data, the proposed semisupervised MGAN can identify the inconspicuous lesion features by using high-resolution fundus images without compression. Experimental results on the public Messidor data set show that the proposed model can grade DR effectively. Note to Practitioners-This article is motivated by the challenging problem due to the inadequacy of labeled data in medical image analysis and the dispersion of efficient features in high-resolution medical images. As for the inadequacy of labeled data in medical image analysis, the reasons mainly include the followings: 1) the high-quality annotation of medical imaging sample depends heavily on scarce medical expertise which is very expensive and 2) comparing with natural issues, it is more difficult to collect medical images because of privacy issues. It is of great significance to apply deep-learning techniques for diabetic retinopathy (DR) recognition. In this article, the multichannel generative adversarial network (GAN) with semisupervision is developed for DR-aided diagnosis. The proposed model can deal with DR classification problem with inadequacy of labeled data in the following ways: 1) the multichannel generative scheme is proposed to generate a series of subfundus images corresponding to the scattering DR features and 2) the proposed multichannel-based GAN (MGAN) model with semisupervision can make full use of both labeled data and unlabeled data. The experimental results demonstrate that the proposed model outperforms the other representative models in terms of accuracy, area under ROC curve (AUC), sensitivity, and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真有邪完成签到 ,获得积分10
刚刚
欧皇完成签到,获得积分10
刚刚
Xuz完成签到 ,获得积分10
刚刚
XIAOMEIMA发布了新的文献求助10
刚刚
谦让的莆完成签到 ,获得积分10
1秒前
灰灰完成签到 ,获得积分10
1秒前
明月朗晴完成签到 ,获得积分10
1秒前
菠萝吹雪发布了新的文献求助10
2秒前
3秒前
wsb76完成签到 ,获得积分10
4秒前
AixLeft完成签到 ,获得积分10
4秒前
Yi发布了新的文献求助10
4秒前
Ricky完成签到,获得积分10
6秒前
哇咔咔完成签到 ,获得积分10
6秒前
ican发布了新的文献求助10
8秒前
8秒前
凸迩丝儿完成签到 ,获得积分10
9秒前
NattyPoe完成签到,获得积分10
9秒前
lu完成签到 ,获得积分10
10秒前
11秒前
泥泞完成签到 ,获得积分10
11秒前
南北完成签到 ,获得积分10
12秒前
大大怪将军关注了科研通微信公众号
12秒前
虚幻的道天完成签到 ,获得积分10
12秒前
Amelia完成签到 ,获得积分10
13秒前
haizz完成签到 ,获得积分10
13秒前
顺利的荔枝完成签到,获得积分10
14秒前
李响发布了新的文献求助10
15秒前
ACCEPT完成签到,获得积分10
15秒前
111发布了新的文献求助10
16秒前
满意的柏柳完成签到 ,获得积分10
19秒前
就爱吃抹茶完成签到 ,获得积分10
19秒前
Luna完成签到 ,获得积分10
19秒前
20秒前
21秒前
希望天下0贩的0应助木叶采纳,获得10
22秒前
别当真完成签到 ,获得积分10
22秒前
斯文败类应助ican采纳,获得10
22秒前
小匡完成签到 ,获得积分10
25秒前
Tracey16完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386