Diabetic Retinopathy Diagnosis Using Multichannel Generative Adversarial Network With Semisupervision

人工智能 计算机科学 深度学习 医学影像学 眼底(子宫) 糖尿病性视网膜病变 生成模型 计算机视觉 模式识别(心理学) 生成语法 机器学习 医学 放射科 糖尿病 内分泌学
作者
Shuqiang Wang,Xiangyu Wang,Yong Hu,Yanyan Shen,Zhile Yang,Min Gan,Baiying Lei
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 574-585 被引量:111
标识
DOI:10.1109/tase.2020.2981637
摘要

Diabetic retinopathy (DR) is one of the major causes of blindness. It is of great significance to apply deep-learning techniques for DR recognition. However, deep-learning algorithms often depend on large amounts of labeled data, which is expensive and time-consuming to obtain in the medical imaging area. In addition, the DR features are inconspicuous and spread out over high-resolution fundus images. Therefore, it is a big challenge to learn the distribution of such DR features. This article proposes a multichannel-based generative adversarial network (MGAN) with semisupervision to grade DR. The multichannel generative model is developed to generate a series of subfundus images corresponding to the scattering DR features. By minimizing the dependence on labeled data, the proposed semisupervised MGAN can identify the inconspicuous lesion features by using high-resolution fundus images without compression. Experimental results on the public Messidor data set show that the proposed model can grade DR effectively. Note to Practitioners-This article is motivated by the challenging problem due to the inadequacy of labeled data in medical image analysis and the dispersion of efficient features in high-resolution medical images. As for the inadequacy of labeled data in medical image analysis, the reasons mainly include the followings: 1) the high-quality annotation of medical imaging sample depends heavily on scarce medical expertise which is very expensive and 2) comparing with natural issues, it is more difficult to collect medical images because of privacy issues. It is of great significance to apply deep-learning techniques for diabetic retinopathy (DR) recognition. In this article, the multichannel generative adversarial network (GAN) with semisupervision is developed for DR-aided diagnosis. The proposed model can deal with DR classification problem with inadequacy of labeled data in the following ways: 1) the multichannel generative scheme is proposed to generate a series of subfundus images corresponding to the scattering DR features and 2) the proposed multichannel-based GAN (MGAN) model with semisupervision can make full use of both labeled data and unlabeled data. The experimental results demonstrate that the proposed model outperforms the other representative models in terms of accuracy, area under ROC curve (AUC), sensitivity, and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵淑敏完成签到,获得积分10
刚刚
lightgo完成签到,获得积分10
刚刚
1秒前
曦小蕊发布了新的文献求助10
2秒前
2秒前
2秒前
bkagyin应助猪猪hero采纳,获得10
4秒前
伊丽莎白完成签到 ,获得积分10
4秒前
4秒前
4秒前
拔丝香芋发布了新的文献求助10
7秒前
念姬发布了新的文献求助10
9秒前
9秒前
9秒前
阿蒙完成签到,获得积分10
10秒前
11秒前
12秒前
科研F5完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
乒坛巨人发布了新的文献求助10
16秒前
CHAIZH发布了新的文献求助10
17秒前
脑洞疼应助曦小蕊采纳,获得10
17秒前
火以敬完成签到,获得积分10
17秒前
笨笨松发布了新的文献求助10
17秒前
xx完成签到,获得积分10
19秒前
猪猪hero发布了新的文献求助10
20秒前
完美世界应助尺素寸心采纳,获得10
20秒前
靳欣怡完成签到,获得积分10
21秒前
Suttier发布了新的文献求助10
21秒前
bystanding完成签到,获得积分10
24秒前
24秒前
24秒前
SC发布了新的文献求助10
25秒前
ll应助自然的砖头采纳,获得10
26秒前
ll应助自然的砖头采纳,获得10
26秒前
情怀应助春天采纳,获得10
28秒前
英姑应助利昂采纳,获得10
28秒前
宝林发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432