Diabetic Retinopathy Diagnosis Using Multichannel Generative Adversarial Network With Semisupervision

人工智能 计算机科学 深度学习 医学影像学 眼底(子宫) 糖尿病性视网膜病变 生成模型 计算机视觉 模式识别(心理学) 生成语法 机器学习 医学 放射科 糖尿病 内分泌学
作者
Shuqiang Wang,Xiangyu Wang,Yong Hu,Yanyan Shen,Zhile Yang,Min Gan,Baiying Lei
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 574-585 被引量:111
标识
DOI:10.1109/tase.2020.2981637
摘要

Diabetic retinopathy (DR) is one of the major causes of blindness. It is of great significance to apply deep-learning techniques for DR recognition. However, deep-learning algorithms often depend on large amounts of labeled data, which is expensive and time-consuming to obtain in the medical imaging area. In addition, the DR features are inconspicuous and spread out over high-resolution fundus images. Therefore, it is a big challenge to learn the distribution of such DR features. This article proposes a multichannel-based generative adversarial network (MGAN) with semisupervision to grade DR. The multichannel generative model is developed to generate a series of subfundus images corresponding to the scattering DR features. By minimizing the dependence on labeled data, the proposed semisupervised MGAN can identify the inconspicuous lesion features by using high-resolution fundus images without compression. Experimental results on the public Messidor data set show that the proposed model can grade DR effectively. Note to Practitioners-This article is motivated by the challenging problem due to the inadequacy of labeled data in medical image analysis and the dispersion of efficient features in high-resolution medical images. As for the inadequacy of labeled data in medical image analysis, the reasons mainly include the followings: 1) the high-quality annotation of medical imaging sample depends heavily on scarce medical expertise which is very expensive and 2) comparing with natural issues, it is more difficult to collect medical images because of privacy issues. It is of great significance to apply deep-learning techniques for diabetic retinopathy (DR) recognition. In this article, the multichannel generative adversarial network (GAN) with semisupervision is developed for DR-aided diagnosis. The proposed model can deal with DR classification problem with inadequacy of labeled data in the following ways: 1) the multichannel generative scheme is proposed to generate a series of subfundus images corresponding to the scattering DR features and 2) the proposed multichannel-based GAN (MGAN) model with semisupervision can make full use of both labeled data and unlabeled data. The experimental results demonstrate that the proposed model outperforms the other representative models in terms of accuracy, area under ROC curve (AUC), sensitivity, and specificity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
可爱的函函应助木槿采纳,获得10
1秒前
现实的筮完成签到,获得积分10
1秒前
1秒前
hokin33发布了新的文献求助100
1秒前
ChemGuo发布了新的文献求助10
1秒前
1秒前
2秒前
Lucas应助无某采纳,获得10
2秒前
沉默的函完成签到,获得积分10
2秒前
qvqtttttt完成签到,获得积分10
2秒前
2秒前
舒适的素发布了新的文献求助10
3秒前
饭神仙鱼完成签到,获得积分10
3秒前
万能图书馆应助Jerry采纳,获得10
4秒前
传奇3应助nn采纳,获得10
4秒前
4秒前
刘可发布了新的文献求助10
4秒前
沉静胜完成签到,获得积分10
4秒前
在水一方应助无心采纳,获得10
4秒前
呃呃呃呃完成签到,获得积分10
5秒前
5秒前
Sickey完成签到,获得积分10
5秒前
脑洞疼应助slgzhangtao采纳,获得10
5秒前
睿力完成签到,获得积分10
6秒前
Hazel发布了新的文献求助10
6秒前
喜悦兰完成签到,获得积分10
6秒前
万能图书馆应助现实的筮采纳,获得10
6秒前
7秒前
JamesPei应助傲娇的小天鹅采纳,获得10
7秒前
7秒前
7秒前
jiayi0114完成签到,获得积分10
7秒前
7秒前
小马甲应助赵鹏采纳,获得10
8秒前
8秒前
goodbai发布了新的文献求助10
9秒前
ChemGuo完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767