星云素
肌原纤维
提丁
结蛋白
肌膜
长春新碱
化学
默默林
肌节
肌丝
解剖
肌动蛋白
心肌细胞
细胞生物学
中间灯丝
生物物理学
生物
细胞骨架
生物化学
波形蛋白
免疫学
免疫组织化学
细胞
作者
Richard G. Taylor,G.H. Geesink,Valery F. Thompson,M. Koohmaraie,Darrel E. Goll
标识
DOI:10.2527/1995.7351351x
摘要
A number of studies have suggested that Z-disk degradation is a major factor contributing to postmortem tenderization. These conclusions seem to have been based largely on experimental findings showing that the calpain system has a major role in postmortem tenderization, and that when incubated with myofibrils or muscle strips, purified calpain removes Z-disks. Approximately 65 to 80% of all postmortem tenderization occurs during the first 3 or 4 d postmortem, however, and there is little or no ultrastructurally detectable Z-disk degradation during this period. Electron microscope studies described in this paper show that, during the first 3 or 4 d of postmortem storage at 4 degrees C, both costameres and N2 lines are degraded. Costameres link myofibrils to the sarcolemma, and N2 lines have been reported to be areas where titin and nebulin filaments, which form a cytoskeletal network linking thick and thin filaments, respectively, to the Z-disk, coalesce. Filamentous structures linking adjacent myofibrils laterally at the level of each Z-disk are also degraded during the first 3 or 4 d of postmortem storage at 4 degrees C, resulting in gaps between myofibrils in postmortem muscle. Degradation of these structures would have important effects on tenderness. The proteins constituting these structures, nebulin and titin (N2 lines); vinculin, desmin, and dystrophin (three of the six to eight proteins constituting costameres); and desmin (filaments linking adjacent myofibrils) are all excellent substrates for the calpains, and nebulin, titin, vinculin, and desmin are largely degraded within 3 d postmortem in semimembranosus muscle. Electron micrographs of myofibrils used in the myofibril fragmentation index assay show that these myofibrils, which have been assumed to be broken at their Z-disks, in fact have intact Z-disks and are broken in their I-bands.
科研通智能强力驱动
Strongly Powered by AbleSci AI