清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Able完成签到,获得积分10
14秒前
我是笨蛋完成签到 ,获得积分10
17秒前
ceeray23发布了新的文献求助20
19秒前
Owen应助董可以采纳,获得10
31秒前
酷酷妙梦完成签到,获得积分10
36秒前
科研通AI2S应助彦嘉采纳,获得10
59秒前
小二郎应助科研通管家采纳,获得10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
Lny发布了新的文献求助30
2分钟前
sh1ro完成签到,获得积分10
2分钟前
luang应助ceeray23采纳,获得40
2分钟前
2分钟前
ww完成签到,获得积分10
2分钟前
斯文败类应助ceeray23采纳,获得20
3分钟前
机智秋莲发布了新的文献求助20
3分钟前
ChatGPT完成签到,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
海阔天空完成签到 ,获得积分10
3分钟前
zys发布了新的文献求助10
4分钟前
ffdhdh应助LYZSh采纳,获得10
4分钟前
4分钟前
机智秋莲完成签到,获得积分20
4分钟前
欣欣子完成签到 ,获得积分10
5分钟前
apt完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
董可以发布了新的文献求助10
6分钟前
Orange应助董可以采纳,获得10
6分钟前
飞翔的企鹅完成签到,获得积分10
6分钟前
6分钟前
董可以发布了新的文献求助10
7分钟前
LYZSh发布了新的文献求助10
7分钟前
彭于晏应助董可以采纳,获得10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990543
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234