An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘涵完成签到 ,获得积分10
1秒前
帅气的沧海完成签到 ,获得积分10
2秒前
辣辣辣辣辣辣完成签到 ,获得积分10
5秒前
6秒前
9秒前
乐观半兰完成签到,获得积分10
11秒前
11秒前
小丸子和zz完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
江雁完成签到,获得积分10
13秒前
坚定芯完成签到,获得积分10
13秒前
叶子兮完成签到,获得积分10
15秒前
幽默的妍完成签到 ,获得积分10
15秒前
Snow完成签到 ,获得积分10
15秒前
15秒前
liuyuh完成签到,获得积分10
16秒前
悠明夜月完成签到 ,获得积分10
17秒前
乌云乌云快走开完成签到,获得积分10
17秒前
你是我的唯一完成签到 ,获得积分10
17秒前
洁白的故人完成签到 ,获得积分10
19秒前
乐观半兰发布了新的文献求助10
19秒前
water应助科研通管家采纳,获得10
20秒前
zhang完成签到 ,获得积分10
20秒前
water应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
鲲鹏完成签到 ,获得积分10
21秒前
大气建辉完成签到 ,获得积分10
21秒前
尛森完成签到,获得积分10
21秒前
机灵枕头完成签到 ,获得积分10
22秒前
糖糖科研顺利呀完成签到 ,获得积分10
24秒前
辣小扬完成签到 ,获得积分10
26秒前
传奇3应助水晶茶杯采纳,获得10
28秒前
幽默的素阴完成签到 ,获得积分10
32秒前
小小鱼完成签到 ,获得积分10
39秒前
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022