An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyaofeng完成签到,获得积分10
1秒前
特大包包完成签到,获得积分10
2秒前
沧海云完成签到 ,获得积分0
2秒前
怡然含桃完成签到 ,获得积分10
2秒前
2秒前
科研通AI2S应助halo采纳,获得10
3秒前
周洋完成签到,获得积分10
4秒前
YF是杨芳完成签到 ,获得积分10
4秒前
轻松博超完成签到,获得积分10
4秒前
4秒前
Canma完成签到 ,获得积分10
4秒前
Horizon完成签到 ,获得积分10
4秒前
越界完成签到,获得积分10
5秒前
5秒前
sskr完成签到,获得积分10
5秒前
Callmeteji完成签到,获得积分10
5秒前
忐忑的白枫完成签到,获得积分10
6秒前
Ahha完成签到 ,获得积分10
6秒前
star完成签到,获得积分0
7秒前
7秒前
nnnnnnn完成签到 ,获得积分10
8秒前
8秒前
东桑末榆完成签到,获得积分10
9秒前
huanglu完成签到 ,获得积分10
9秒前
尔东先生完成签到,获得积分10
9秒前
丫丫完成签到 ,获得积分10
9秒前
9秒前
木木三完成签到,获得积分10
9秒前
1s完成签到,获得积分10
9秒前
善学以致用应助小丸子采纳,获得10
10秒前
爱笑子默完成签到 ,获得积分10
10秒前
hovumath完成签到,获得积分10
11秒前
松鼠鳜鱼完成签到,获得积分10
12秒前
韭菜完成签到,获得积分20
12秒前
wave完成签到,获得积分10
12秒前
耳东陈完成签到 ,获得积分10
14秒前
活泼的平灵完成签到,获得积分10
14秒前
机灵的涵蕾完成签到,获得积分10
14秒前
jinjing完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510188
求助须知:如何正确求助?哪些是违规求助? 4604859
关于积分的说明 14490437
捐赠科研通 4539850
什么是DOI,文献DOI怎么找? 2487726
邀请新用户注册赠送积分活动 1470004
关于科研通互助平台的介绍 1442484