亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NIUB完成签到,获得积分10
3秒前
直率芮完成签到 ,获得积分10
4秒前
domingo发布了新的文献求助10
5秒前
Crisp完成签到 ,获得积分10
7秒前
9秒前
enchanted发布了新的文献求助10
10秒前
13秒前
栗栗栗子发布了新的文献求助10
13秒前
enchanted发布了新的文献求助10
23秒前
栗栗栗子完成签到,获得积分10
24秒前
喝粥不用勺吖完成签到,获得积分20
24秒前
领导范儿应助domingo采纳,获得10
24秒前
个性的秀发完成签到,获得积分10
31秒前
33秒前
耳鼻喉不发言完成签到,获得积分10
35秒前
十六发布了新的文献求助10
37秒前
yj完成签到,获得积分10
40秒前
40秒前
天天完成签到 ,获得积分10
41秒前
42秒前
十六完成签到,获得积分10
44秒前
灵梦柠檬酸完成签到,获得积分10
48秒前
小m完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
SPLjoker完成签到 ,获得积分10
1分钟前
Wsssss完成签到,获得积分10
1分钟前
奋斗的暖阳完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
ZL完成签到 ,获得积分10
1分钟前
1分钟前
Diamond完成签到 ,获得积分10
1分钟前
平淡如天发布了新的文献求助10
1分钟前
JamesPei应助平淡如天采纳,获得10
2分钟前
余念安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
El发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228