An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助wbh采纳,获得10
1秒前
Lucas应助万物安生采纳,获得10
5秒前
健忘跳跳糖完成签到,获得积分20
5秒前
6秒前
6秒前
C陈完成签到,获得积分10
8秒前
9秒前
suger发布了新的文献求助10
10秒前
11秒前
干雅柏完成签到,获得积分10
12秒前
八九完成签到,获得积分10
13秒前
14秒前
干雅柏发布了新的文献求助10
15秒前
Stardust发布了新的文献求助10
15秒前
黑白和完成签到 ,获得积分10
16秒前
yang完成签到,获得积分10
17秒前
金蛋蛋发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
24秒前
29秒前
淡定的电源完成签到,获得积分10
32秒前
32秒前
lm发布了新的文献求助10
35秒前
37秒前
善学以致用应助孤独问旋采纳,获得10
37秒前
孙燕应助霸气安筠采纳,获得30
38秒前
李健应助科研通管家采纳,获得10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
SYLH应助科研通管家采纳,获得20
38秒前
SYLH应助科研通管家采纳,获得10
38秒前
上官若男应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
丘比特应助科研通管家采纳,获得10
38秒前
SYLH应助科研通管家采纳,获得10
39秒前
CAOHOU应助科研通管家采纳,获得10
39秒前
SYLH应助科研通管家采纳,获得10
39秒前
CAOHOU应助科研通管家采纳,获得10
39秒前
SYLH应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173