An effective computer aided diagnosis model for pancreas cancer on PET/CT images

计算机科学 人工智能 癌症 胰腺 计算机断层摄影术 放射科 计算机辅助诊断 胰腺癌 计算机视觉 核医学 医学 医学物理学 内科学
作者
Siqi Li,Huiyan Jiang,Zhiguo Wang,Guoxu Zhang,Yu‐Dong Yao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:165: 205-214 被引量:64
标识
DOI:10.1016/j.cmpb.2018.09.001
摘要

Background and objective: Pancreas cancer is a digestive tract tumor with high malignancy, which is difficult for diagnosis and treatment at early time. To this end, this paper proposes a computer aided diagnosis (CAD) model for pancreas cancer on Positron Emission Tomography/Computed Tomography (PET/CT) images. Methods: There are three essential steps in the proposed CAD model, including (1) pancreas segmentation, (2) feature extraction and selection, (3) classifier design, respectively. First, pancreas segmentation is performed using simple linear iterative clustering (SLIC) on CT pseudo-color images generated by the gray interval mapping (GIP) method. Second, dual threshold principal component analysis (DT-PCA) is developed to select the most beneficial feature combination, which not only considers principal features but also integrates some non-principal features into a new polar angle representation. Finally, a hybrid feedback-support vector machine-random forest (HFB-SVM-RF) model is designed to identify normal pancreas or pancreas cancer and the key is to use 8 types of SVMs to establish the decision trees of RF. Results: The proposed CAD model is tested on 80 cases of PET/CT data (from General Hospital of Shenyang Military Area Command) and achieves the average pancreas cancer identification accuracy of 96.47%, sensibility of 95.23% and specificity of 97.51%, respectively. In addition, the proposed pancreas segmentation method is also evaluated using a public dataset with 82 3D CT scans from the National Institutes of Health (NIH) Clinical Center and its performance is found to surpass other methods, with a mean Dice coefficient of 78.9% and Jaccard index of 65.4%. Conclusions: Collectively, contrast experiments in 10-fold cross validation demonstrate the efficiency and accuracy of the proposed CAD model as well as its performance advantages as compared with related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的德地完成签到,获得积分10
刚刚
hahhhhhh2完成签到,获得积分10
刚刚
彭于彦祖应助炙热怜寒采纳,获得30
刚刚
阿一发布了新的文献求助10
1秒前
wgl完成签到,获得积分10
1秒前
lswhyr完成签到,获得积分10
2秒前
2秒前
嗯哼完成签到 ,获得积分10
2秒前
fangfang完成签到,获得积分10
3秒前
wen完成签到 ,获得积分10
4秒前
诸嚣发布了新的文献求助10
4秒前
4秒前
4秒前
无花果应助玩命的若采纳,获得10
4秒前
5秒前
小泰勒横着走完成签到,获得积分10
5秒前
伊雪儿完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助飞翔云端采纳,获得10
5秒前
6秒前
栗子完成签到 ,获得积分10
7秒前
7秒前
8秒前
获野千完成签到 ,获得积分10
8秒前
红豆抹茶完成签到,获得积分10
8秒前
陶远望完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
083号完成签到,获得积分10
9秒前
梓泽丘墟应助吉吉国王采纳,获得10
9秒前
小张同学发布了新的文献求助10
9秒前
与光完成签到 ,获得积分10
10秒前
444完成签到,获得积分10
10秒前
11秒前
Orange应助自由冬亦采纳,获得10
12秒前
烟花应助cc采纳,获得10
12秒前
鱼贝贝发布了新的文献求助10
13秒前
玙凡完成签到,获得积分10
14秒前
wlei完成签到,获得积分10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180194
求助须知:如何正确求助?哪些是违规求助? 2830601
关于积分的说明 7978929
捐赠科研通 2492151
什么是DOI,文献DOI怎么找? 1329250
科研通“疑难数据库(出版商)”最低求助积分说明 635708
版权声明 602954