An Efficient Framework for Correctness-Aware kNN Queries on Road Networks

正确性 计算机科学 搜索引擎索引 数据挖掘 k-最近邻算法 吞吐量 集合(抽象数据类型) 序列化 光学(聚焦) 查询优化 理论计算机科学 情报检索 算法 人工智能 程序设计语言 无线 物理 光学 电信
作者
Dan He,Sibo Wang,Xiaofang Zhou,Reynold Cheng
标识
DOI:10.1109/icde.2019.00118
摘要

Given a set O of objects and a query point q on a road network, the k Nearest Neighbor (kNN) query returns the k nearest objects in O with the shortest road network distance to q. These kNN queries find many applications in location-based services, e.g., ride-hailing services, where each taxi is regarded as an object. In such applications, objects are constantly moving such that even for the same query point, the correct answer of a kNN query may vary with time. Ideally, the returned answer should be adequately correct with respect to the moving object set. However, in literature, all existing solutions for kNN queries mainly focus on reducing the query time, indexing storage, or throughput of the kNN queries with little focus on their correctness. Motivated by this, we propose a framework on correctness-aware kNN queries which aim to optimize system throughput while guaranteeing query correctness on moving objects. We formally define the serializable-kNN query that ensures the correctness of the query answer when considering moving objects and dependencies of different queries. We propose several techniques to optimize the throughput of serializable-kNN queries: firstly, we propose efficient index structures and new query algorithms that significantly improve the throughput; we further present novel scheduling algorithms that aim to avoid conflicts and improve the system throughput. Moreover, we devise approximate solutions that provide a controllable trade-off between the correctness of kNN queries and system throughput. Extensive experiments on real-world data demonstrate the effectiveness and efficiency of our proposed solutions over alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
如梦如画完成签到,获得积分10
1秒前
singyu9完成签到,获得积分10
1秒前
LHC完成签到,获得积分10
2秒前
Simone发布了新的文献求助30
3秒前
pan发布了新的文献求助10
3秒前
刘二宝完成签到,获得积分20
3秒前
桐桐应助留胡子的代天采纳,获得10
4秒前
半山完成签到,获得积分10
4秒前
4秒前
wenwubei发布了新的文献求助10
4秒前
4秒前
火速阿百川完成签到,获得积分10
4秒前
4秒前
玛卡巴卡完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
听风轻语完成签到,获得积分10
6秒前
dahua完成签到,获得积分10
6秒前
小苏发布了新的文献求助10
6秒前
咩咩羊的杨完成签到,获得积分10
7秒前
风起完成签到 ,获得积分10
7秒前
Gavin发布了新的文献求助10
7秒前
夏夏完成签到,获得积分20
7秒前
科研通AI5应助坚强的笑天采纳,获得10
8秒前
里透完成签到,获得积分10
8秒前
8秒前
DullElm完成签到,获得积分10
8秒前
8秒前
风和日丽完成签到,获得积分10
8秒前
9秒前
冰淇淋完成签到,获得积分10
9秒前
C2H5OH发布了新的文献求助30
9秒前
Aura发布了新的文献求助10
9秒前
9秒前
科研通AI5应助心态采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550880
求助须知:如何正确求助?哪些是违规求助? 3127255
关于积分的说明 9373042
捐赠科研通 2826359
什么是DOI,文献DOI怎么找? 1553714
邀请新用户注册赠送积分活动 725051
科研通“疑难数据库(出版商)”最低求助积分说明 714555