RASCAR: Recovery-Aware Switch-Controller Assignment and Routing in SDN

计算机科学 前进飞机 控制器(灌溉) 路径(计算) 启发式 分布式计算 解耦(概率) 布线(电子设计自动化) 计算机网络 工程类 农学 生物 控制工程 人工智能 网络数据包
作者
S. Sedef Savas,Massimo Tornatore,Ferhat Dikbıyık,Ayşegül Yayımlı,Charles U. Martel,Biswanath Mukherjee
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 1222-1234 被引量:23
标识
DOI:10.1109/tnsm.2018.2879865
摘要

Decoupling control and data planes in a software-defined network (SDN) has its advantages along with its challenges. Especially, resilient communication between elements in the data plane (switches) and in the control plane (controllers) is key to SDN's success as disruption of this communication after a failure can severely affect data-plane functions. After a failure, simultaneous recovery of all switch-controller communication paths (control paths) may not be possible, and multiple recovery stages may be required. Since restoration of disrupted data paths depends on the recovery of disrupted control paths feeding control information to switches, the performance of control-path recovery seriously affects data-path recovery performance. The assignment of controller to switches and the routing of controller-switch control paths are what determines the control-plane recovery performance, and hence should be performed in conjunction with a recovery plan after failures. This study proposes an algorithm for recovery-aware switch-controller assignment and routing (RASCAR), which enables fast data-path recovery after a set of failures (e.g., single point of failures and disasters). We formulate the problem as an integer linear program and propose an efficient heuristic algorithm to solve large problem instances. Our illustrative numerical studies show that RASCAR significantly reduces the data-path restoration times after any failure with a minor increase in resource consumption of control paths.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助10
刚刚
好运粥完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
朴实初夏完成签到 ,获得积分10
1秒前
2秒前
PinKing完成签到,获得积分10
2秒前
musclesheep发布了新的文献求助10
3秒前
甜甜的曼荷完成签到,获得积分10
3秒前
ww发布了新的文献求助10
3秒前
wuhao发布了新的文献求助10
4秒前
ccm应助SSR采纳,获得10
4秒前
小二郎应助东晓采纳,获得10
5秒前
xuhaoo0125完成签到,获得积分10
5秒前
ding应助DRDOC采纳,获得10
6秒前
Sera完成签到,获得积分10
6秒前
隐形曼青应助张莹采纳,获得10
6秒前
深情安青应助滴滴答答采纳,获得10
6秒前
Akim应助小春采纳,获得10
7秒前
8秒前
8秒前
wuhao完成签到,获得积分10
9秒前
9秒前
Wsn完成签到,获得积分10
9秒前
大佬完成签到,获得积分10
9秒前
calm完成签到,获得积分10
10秒前
10秒前
一秋一年完成签到,获得积分10
10秒前
Tao2023完成签到,获得积分10
10秒前
zz完成签到,获得积分10
10秒前
Vicki完成签到,获得积分0
10秒前
11发布了新的文献求助10
10秒前
好困应助御史采纳,获得10
11秒前
12秒前
12秒前
12秒前
牧林听风完成签到 ,获得积分10
12秒前
13秒前
13秒前
爱听歌的半凡完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699639
求助须知:如何正确求助?哪些是违规求助? 5132174
关于积分的说明 15227194
捐赠科研通 4854644
什么是DOI,文献DOI怎么找? 2604831
邀请新用户注册赠送积分活动 1556206
关于科研通互助平台的介绍 1514427