作者
Xuehua Liu,Zheng Chen,Zhonglin Han,Yu Liu,Xiang Wu,Yuzhu Peng,Wencheng Di,Rongfang Lan,Sun Bu-gao,Biao Xu,Wei Xu
摘要
The voltage-gated cardiac sodium channel, Nav1.5, is the key component that controls cardiac excitative electrical impulse and propagation. However, the dynamic alterations of Nav1.5 during cardiac ischemia and reperfusion (I/R) are seldom reported. We found that the protein levels of rat cardiac Nav1.5 were significantly decreased in response to cardiac I/R injury. By simulating I/R injury in cells through activating AMPK by glucose deprivation, AMPK activator treatment, or hypoxia and reoxygenation (H/R), we found that Nav1.5 was down-regulated by AMPK-mediated autophagic degradation. Furthermore, AMPK was found to phosphorylate Nav1.5 at threonine (T) 101, which then regulates the interaction between Nav1.5 and the autophagic adaptor protein, microtubule-associated protein 1 light chain 3 (LC3), by exposing the LC3-interacting region adjacent to T101 in Nav1.5. This study highlights an instrumental role of AMPK in mediating the autophagic degradation of Nav1.5 during cardiac I/R injury.—Liu, X., Chen, Z., Han, Z., Liu, Y., Wu, X., Peng, Y., Di, W., Lan, R., Sun, B., Xu, B., Xu, W. AMPK-mediated degradation of Nav1.5 through autophagy. FASEB J. 33, 5366–5376 (2019). www.fasebj.org