珊瑚礁
暗礁
背景(考古学)
珊瑚礁组织
生态系统
珊瑚
底栖区
生态学
航程(航空)
珊瑚鱼
基于生态系统的管理
珊瑚礁的复原力
地理
渔业
环境资源管理
环境科学
珊瑚礁保护
生物
复合材料
考古
材料科学
作者
Jean‐Baptiste Jouffray,Lisa M. Wedding,Albert V. Norström,Mary K. Donovan,Gareth J. Williams,Larry B. Crowder,Ashley L. Erickson,Alan M. Friedlander,Nicholas A. J. Graham,Jamison M. Gove,Carrie V. Kappel,John N. Kittinger,Joey Lecky,Kirsten L.L. Oleson,Kimberly A. Selkoe,Crow White,Ivor D. Williams,Magnus Nyström
标识
DOI:10.1098/rspb.2018.2544
摘要
Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago—20 anthropogenic and biophysical predictors over 620 survey sites—we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI