Destriping of Multispectral Remote Sensing Image Using Low-Rank Tensor Decomposition

计算机科学 多光谱图像 正规化(语言学) 张量(固有定义) 主成分分析 秩(图论) 分段 人工智能 算法 模式识别(心理学) 数学 组合数学 数学分析 纯数学
作者
Yong Chen,Ting‐Zhu Huang,Xi-Le Zhao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:11 (12): 4950-4967 被引量:69
标识
DOI:10.1109/jstars.2018.2877722
摘要

Multispectral image (MSI) destriping is a challenging topic and has been attracting much research attention in remote sensing area due to its importance in improving the image qualities and subsequent applications. The existing destriping methods mainly focus on matrix-based modeling representation, which fails to fully discover the correlation of the stripe component in both spatial dimensions. In this paper, we propose a novel low-rank tensor decomposition framework based MSI destriping method by decomposing the striped image into the image component and stripe component. Specifically, for the image component, we use the anisotropic spatial unidirectional total variation (TV) and spectral TV regularization to enhance the piecewise smoothness in both spatial and spectral domains. Moreover, for the stripe component, we adopt tensor Tucker decomposition and ℓ 2,1 -norm regularization to model the spatial correlation and group sparsity characteristic among all bands, respectively. An efficient algorithm using the augmented Lagrange multiplier method is designed to solve the proposed optimization model. Experiments under various cases of simulated data and real-world data demonstrate the effectiveness of the proposed model over the existing single-band and MSI destriping methods in terms of the qualitative and quantitative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuuuuu发布了新的文献求助10
刚刚
2秒前
斯文败类应助李李采纳,获得10
2秒前
2秒前
小马甲应助烤鸭采纳,获得10
2秒前
3秒前
杨xy发布了新的文献求助10
3秒前
敬老院N号应助车幻梦采纳,获得30
4秒前
4秒前
5秒前
NexusExplorer应助呆萌棒棒糖采纳,获得10
6秒前
潺潺流水发布了新的文献求助10
7秒前
dusk发布了新的文献求助10
8秒前
索骥发布了新的文献求助30
9秒前
jasy发布了新的文献求助10
9秒前
9秒前
星辰大海应助元复天采纳,获得10
9秒前
井野浮应助沈霸霸采纳,获得10
11秒前
12秒前
12秒前
13秒前
英俊的铭应助SCI采纳,获得10
13秒前
感动归尘发布了新的文献求助10
14秒前
杳鸢应助Ash采纳,获得10
16秒前
柔弱熊猫发布了新的文献求助10
16秒前
李李发布了新的文献求助10
16秒前
16秒前
隐形曼青应助大力云朵采纳,获得10
16秒前
16秒前
18秒前
光亮芷天完成签到,获得积分10
18秒前
18秒前
19秒前
Hyux发布了新的文献求助10
20秒前
幽默白竹完成签到,获得积分10
20秒前
21秒前
jevon应助Tysonqu采纳,获得10
21秒前
ikin完成签到,获得积分20
21秒前
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150