Three-dimensional localization microscopy using deep learning

计算机科学 显微镜 模式识别(心理学) 图像分辨率 显微镜 迭代重建 超分辨显微术
作者
Philipp Zelger,K. Kaser,Benedikt K. Rossboth,Lukas Velas,Gerhard J. Schütz,Alexander Jesacher
出处
期刊:Optics Express [The Optical Society]
卷期号:26 (25): 33166-33179 被引量:39
标识
DOI:10.1364/oe.26.033166
摘要

Single molecule localization microscopy (SMLM) is one of the fastest evolving and most broadly used super-resolving imaging techniques in the biosciences. While image recordings could take up to hours only ten years ago, scientists are now reaching for real-time imaging in order to follow the dynamics of biology. To this end, it is crucial to have data processing strategies available that are capable of handling the vast amounts of data produced by the microscope. In this article, we report on the use of a deep convolutional neural network (CNN) for localizing particles in three dimensions on the basis of single images. In test experiments conducted on fluorescent microbeads, we show that the precision obtained with a CNN can be comparable to that of maximum likelihood estimation (MLE), which is the accepted gold standard. Regarding speed, the CNN performs with about 22k localizations per second more than three orders of magnitude faster than the MLE algorithm of ThunderSTORM. If only five parameters are estimated (3D position, signal and background), our CNN implementation is currently slower than the fastest, recently published GPU-based MLE algorithm. However, in this comparison the CNN catches up with every additional parameter, with only a few percent extra time required per additional dimension. Thus it may become feasible to estimate further variables such as molecule orientation, aberration functions or color. We experimentally demonstrate that jointly estimating Zernike mode magnitudes for aberration modeling can significantly improve the accuracy of the estimates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzsy完成签到,获得积分10
刚刚
领导范儿应助道天采纳,获得10
刚刚
稳重紫蓝完成签到 ,获得积分10
1秒前
科研通AI2S应助于特采纳,获得10
1秒前
zmz应助郑大钱采纳,获得10
2秒前
2秒前
2秒前
lizi完成签到,获得积分10
2秒前
2秒前
3秒前
春雨发布了新的文献求助10
3秒前
朵朵发布了新的文献求助10
3秒前
3秒前
顾矜应助张垚采纳,获得10
4秒前
冷傲松鼠完成签到 ,获得积分10
4秒前
邵初蓝完成签到,获得积分10
5秒前
6秒前
燕燕完成签到 ,获得积分10
6秒前
傻傻的修洁完成签到,获得积分10
6秒前
6秒前
uf欧发布了新的文献求助10
6秒前
称心的灵枫完成签到 ,获得积分20
6秒前
6秒前
7秒前
zik应助yy采纳,获得10
7秒前
7秒前
小蘑菇应助yiyi采纳,获得10
7秒前
炸鸡加热发布了新的文献求助10
7秒前
啊啊啊啊发布了新的文献求助10
7秒前
陈住气完成签到,获得积分10
7秒前
8秒前
8秒前
濯枝雨关注了科研通微信公众号
8秒前
bocai完成签到,获得积分10
8秒前
library2025发布了新的文献求助10
8秒前
慕山完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034