Three-dimensional localization microscopy using deep learning

计算机科学 显微镜 模式识别(心理学) 图像分辨率 显微镜 迭代重建 超分辨显微术
作者
Philipp Zelger,K. Kaser,Benedikt K. Rossboth,Lukas Velas,Gerhard J. Schütz,Alexander Jesacher
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:26 (25): 33166-33179 被引量:39
标识
DOI:10.1364/oe.26.033166
摘要

Single molecule localization microscopy (SMLM) is one of the fastest evolving and most broadly used super-resolving imaging techniques in the biosciences. While image recordings could take up to hours only ten years ago, scientists are now reaching for real-time imaging in order to follow the dynamics of biology. To this end, it is crucial to have data processing strategies available that are capable of handling the vast amounts of data produced by the microscope. In this article, we report on the use of a deep convolutional neural network (CNN) for localizing particles in three dimensions on the basis of single images. In test experiments conducted on fluorescent microbeads, we show that the precision obtained with a CNN can be comparable to that of maximum likelihood estimation (MLE), which is the accepted gold standard. Regarding speed, the CNN performs with about 22k localizations per second more than three orders of magnitude faster than the MLE algorithm of ThunderSTORM. If only five parameters are estimated (3D position, signal and background), our CNN implementation is currently slower than the fastest, recently published GPU-based MLE algorithm. However, in this comparison the CNN catches up with every additional parameter, with only a few percent extra time required per additional dimension. Thus it may become feasible to estimate further variables such as molecule orientation, aberration functions or color. We experimentally demonstrate that jointly estimating Zernike mode magnitudes for aberration modeling can significantly improve the accuracy of the estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马嘻嘻完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
虚心的函完成签到,获得积分10
2秒前
lee完成签到,获得积分10
3秒前
一一完成签到,获得积分10
3秒前
3秒前
4秒前
Eason_C发布了新的文献求助10
5秒前
1234发布了新的文献求助10
6秒前
6秒前
6秒前
ssk12345678发布了新的文献求助10
7秒前
7秒前
笑而不语完成签到 ,获得积分10
9秒前
CipherSage应助1234采纳,获得10
9秒前
会飞的猪发布了新的文献求助10
10秒前
风中的凝安完成签到,获得积分10
10秒前
10秒前
fxx完成签到,获得积分10
11秒前
11秒前
浮游应助举个栗子8采纳,获得10
11秒前
拖把粘十发布了新的文献求助10
11秒前
不想喝周完成签到,获得积分10
11秒前
华仔应助含糊的小松鼠采纳,获得10
11秒前
12秒前
猫猫完成签到 ,获得积分10
12秒前
12秒前
hhh完成签到 ,获得积分10
13秒前
13秒前
无奈醉柳完成签到,获得积分10
13秒前
Chen完成签到,获得积分10
14秒前
14秒前
xy发布了新的文献求助10
15秒前
16秒前
英姑应助起风了采纳,获得10
16秒前
故里发布了新的文献求助10
16秒前
洁面乳完成签到 ,获得积分10
16秒前
桐桐应助lyy采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264885
求助须知:如何正确求助?哪些是违规求助? 4425005
关于积分的说明 13775053
捐赠科研通 4300292
什么是DOI,文献DOI怎么找? 2359611
邀请新用户注册赠送积分活动 1355724
关于科研通互助平台的介绍 1317017