Three-dimensional localization microscopy using deep learning

计算机科学 显微镜 模式识别(心理学) 图像分辨率 显微镜 迭代重建 超分辨显微术
作者
Philipp Zelger,K. Kaser,Benedikt K. Rossboth,Lukas Velas,Gerhard J. Schütz,Alexander Jesacher
出处
期刊:Optics Express [The Optical Society]
卷期号:26 (25): 33166-33179 被引量:39
标识
DOI:10.1364/oe.26.033166
摘要

Single molecule localization microscopy (SMLM) is one of the fastest evolving and most broadly used super-resolving imaging techniques in the biosciences. While image recordings could take up to hours only ten years ago, scientists are now reaching for real-time imaging in order to follow the dynamics of biology. To this end, it is crucial to have data processing strategies available that are capable of handling the vast amounts of data produced by the microscope. In this article, we report on the use of a deep convolutional neural network (CNN) for localizing particles in three dimensions on the basis of single images. In test experiments conducted on fluorescent microbeads, we show that the precision obtained with a CNN can be comparable to that of maximum likelihood estimation (MLE), which is the accepted gold standard. Regarding speed, the CNN performs with about 22k localizations per second more than three orders of magnitude faster than the MLE algorithm of ThunderSTORM. If only five parameters are estimated (3D position, signal and background), our CNN implementation is currently slower than the fastest, recently published GPU-based MLE algorithm. However, in this comparison the CNN catches up with every additional parameter, with only a few percent extra time required per additional dimension. Thus it may become feasible to estimate further variables such as molecule orientation, aberration functions or color. We experimentally demonstrate that jointly estimating Zernike mode magnitudes for aberration modeling can significantly improve the accuracy of the estimates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Yusang发布了新的文献求助10
刚刚
1秒前
1秒前
大个应助俏皮的凝梦采纳,获得10
1秒前
purple1212发布了新的文献求助30
1秒前
汉堡包应助AW采纳,获得10
2秒前
FashionBoy应助儒雅香旋采纳,获得10
2秒前
2秒前
可达鸭发布了新的文献求助10
2秒前
2秒前
xiangdemeilo发布了新的文献求助10
2秒前
内向乾发布了新的文献求助20
2秒前
3秒前
所所应助东郭秋凌采纳,获得10
3秒前
野火烧发布了新的文献求助10
3秒前
华仔完成签到,获得积分10
3秒前
勿明完成签到,获得积分0
3秒前
CodeCraft应助狗宅采纳,获得10
3秒前
孙雯发布了新的文献求助30
4秒前
4秒前
4秒前
han发布了新的文献求助10
4秒前
4秒前
Chaoya完成签到,获得积分10
4秒前
lisuye1990发布了新的文献求助10
4秒前
王博洋发布了新的文献求助10
5秒前
Kevin Li发布了新的文献求助10
5秒前
Owen应助阮楷瑞采纳,获得10
6秒前
didiwei发布了新的文献求助10
6秒前
所所应助机灵水卉采纳,获得10
6秒前
7秒前
7秒前
kokp发布了新的文献求助10
7秒前
绝世大魔王完成签到 ,获得积分10
8秒前
yunlei发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214