Factor analysis in psychological assessment research: Common pitfalls and recommendations.

心理信息 结构方程建模 心理学 拟合优度 考试(生物学) 数据科学 临床心理学 比例(比率) 管理科学 计算机科学 应用心理学 计量经济学 心理测量学 验证性因素分析 梅德林 机器学习 古生物学 物理 量子力学 政治学 法学 经济 生物
作者
Martin Sellbom,Auke Tellegen
出处
期刊:Psychological Assessment [American Psychological Association]
卷期号:31 (12): 1428-1441 被引量:251
标识
DOI:10.1037/pas0000623
摘要

This article provides a summary and discussion of major challenges and pitfalls in factor analysis as observed in psychological assessment research, as well as our recommendations within each of these areas. More specifically, we discuss a need to be more careful about item distribution properties in light of their potential impact on model estimation as well as providing a very strong caution against item parceling in the evaluation of psychological test instruments. Moreover, we consider the important issue of estimation, with a particular emphasis on selecting the most appropriate estimator to match the scaling properties of test item indicators. Next, we turn our attention to the issues of model fit and comparison of alternative models with the strong recommendation to allow for theoretical guidance rather than being overly influenced by model fit indices. In addition, since most models in psychological assessment research involve multidimensional items that often do not map neatly onto a priori confirmatory models, we provide recommendations about model respecification. Finally, we end our article with a discussion of alternative forms of model specification that have become particularly popular recently: exploratory structural equation modeling (ESEM) and bifactor modeling. We discuss various important areas of consideration for the applied use of these model specifications, with a conclusion that, whereas ESEM models can offer a useful avenue for the evaluation of internal structure of test items, researchers should be very careful about using bifactor models for this purpose. Instead, we highlight other, more appropriate applications of such models. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIN123456完成签到,获得积分10
刚刚
隐形的觅波完成签到 ,获得积分10
刚刚
刚刚
瓶里岑发布了新的文献求助10
刚刚
1秒前
library2025完成签到,获得积分10
1秒前
JamesPei应助甜蜜水蜜桃采纳,获得10
1秒前
demi完成签到,获得积分10
1秒前
2秒前
QMZ完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
orixero应助椰汁糕采纳,获得10
3秒前
清爽的雨竹完成签到,获得积分10
4秒前
坦率邪欢发布了新的文献求助10
4秒前
科研通AI5应助安柒柒采纳,获得10
4秒前
4秒前
xiaozhao完成签到,获得积分10
4秒前
狂野书易完成签到,获得积分10
5秒前
泰裤辣发布了新的文献求助10
5秒前
lily完成签到,获得积分10
5秒前
5秒前
天天快乐应助Kakaluote采纳,获得10
6秒前
Owen应助想飞的猪采纳,获得10
6秒前
7秒前
hexinyu发布了新的文献求助10
7秒前
Xiaoxin_Ju完成签到,获得积分10
7秒前
ZZ发布了新的文献求助10
7秒前
ww发布了新的文献求助10
8秒前
8秒前
科研通AI5应助路老师采纳,获得10
8秒前
天地本宽完成签到,获得积分20
8秒前
8秒前
8秒前
脑洞疼应助远方采纳,获得10
8秒前
9秒前
科研长颈鹿完成签到,获得积分10
10秒前
YL完成签到,获得积分10
10秒前
MIYA完成签到 ,获得积分10
10秒前
裴南苇完成签到 ,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667345
求助须知:如何正确求助?哪些是违规求助? 3225976
关于积分的说明 9767005
捐赠科研通 2935872
什么是DOI,文献DOI怎么找? 1608020
邀请新用户注册赠送积分活动 759470
科研通“疑难数据库(出版商)”最低求助积分说明 735371