壳聚糖酶
药物输送
壳聚糖
化学
体内
体外
药品
药理学
庆大霉素
生物化学
抗生素
生物
生物技术
有机化学
作者
Shayanne A. Lajud,Zhao Han,Fang‐Lu Chi,Rende Gu,Danish A. Nagda,Orysia Bezpalko,Samudra Sanyal,Andrés M. Bur,Ziying Han,Bert W. O’Malley,Daqing Li
标识
DOI:10.1016/j.jconrel.2012.12.031
摘要
We have recently developed a novel inner ear drug delivery system using chitosan glycerophosphate (CGP) hydrogel loaded with drugs commonly used for treatment of inner ear diseases, significantly improving the drugs' sustained delivery. The goal of this study is to evaluate the effectiveness of chitosanase as a "switch off" mechanism for this drug delivery system when side effects and potential ototoxicities appear during treatment. To evaluate this effect, we tested gentamicin (GENT) in the inner ear following CGP delivery with/without regulation. Purified chitosanase was obtained and used for regulating the CGP delivery system. In vitro studies were performed to evaluate the effect of the interaction between chitosanase and CGP-hydrogel loaded with GENT or Texas Red-labeled GENT (GTTR). In vivo studies were performed using our mouse model to investigate the regulatory effect of chitosanase application on the delivery of GENT to the inner ear. To assess the potential drug rerouting regulatory effect of chitosanase the GTTR fluorescence intensity was evaluated at the round window niche (RWN) and the Eustachian tube (ET). To further characterize this regulatory effect, GENT concentration in the perilymph of the inner ear was analyzed by chromatographic tandem mass spectrometry (LC–MS/MS), and the uptake in the inner ear cells was measured using fluorescence microscopy following CGP delivery with/without chitosanase application. The chitosanase effectively digested the CGP-hydrogel, quickly releasing GENT and GTTR from the system in vitro. When reacted with GENT alone chitosanase did not produce any reducing sugars and did not affect GENT's antimicrobial activity. In vivo GTTR was effectively rerouted from the RWN to the ET, limiting its uptake in inner ear hair cells. Concurrent with these findings, GENT concentration in the inner ear perilymph was significantly decreased after chitosanase application. Our study findings suggest that, for the first time, sustained and controlled inner ear drug delivery can be successfully regulated enhancing its translation potential for clinical application. The use of chitosanase to digest the CGP-hydrogel results in the rerouting of the loaded drug away from the RWN, effectively downregulating its delivery to the inner ear. This important modification to our drug delivery system has the ability to deliver therapy to the inner ear until desired effect is achieved and to stop this process when side effects or treatment-related ototoxicities start to occur, providing a novel and salient approach for safe and effective delivery to the inner ear.
科研通智能强力驱动
Strongly Powered by AbleSci AI