纳米颗粒
白色念珠菌
材料科学
抗菌剂
金黄色葡萄球菌
锌
纳米技术
紫外线
核化学
化学
细菌
微生物学
有机化学
生物
光电子学
冶金
遗传学
作者
Rizwan Hasan Khan,Mohd Ayyub Khan,Hameedullah,Akhter H. Ansari,Lohani,Rizwan Hasan Khan,Iqbal Ahmad,Fohad Mabood Husain,Wasi Khan,Mohd Aftab Alam
摘要
Abstract: Due to enormous applications of metal oxide nanoparticles in research and health-related applications, metal oxide nanoparticles are increasingly being developed through cheaper and more user-friendly approaches. We have formulated a simple route to synthesize zinc oxide nanoparticles (ZNPs) by a sol–gel method at near-room temperatures 25°C, 35°C, 55°C, and 75°C. The results are analyzed by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The effect of different temperature conditions (25°C–75°C) on the particulate sizes (23.7–88.8 nm), pH levels (11.7–11.9), and morphologies (slender needle–broad arrow) of flower-shaped ZNP colonies is studied. A possible mechanism depicting the growth rates at different temperatures and of different facets, mainly towards the <0 0 0 I> and <0 I Ī0> planes of the ZNPs has also been discussed. The values of λ max (293–298 nm) suggest that ZNPs prepared at 55°C are the most effective ultraviolet B absorbers, and that they can be used in sunscreens. Highly significant antimicrobial activity against medically important Gram-positive ( Staphylococcus aureus ) and Gram-negative ( Escherichia coli ) bacteria and fungi ( Candida albicans ) by these ZNPs was also revealed. As S. aureus and C. albicans are responsible for many contagious dermal infections such as abscesses, furuncles, carbuncles, cellulitis, and candidiasis, we can postulate that our fabricated ZNPs may be useful as antimicrobial agents in antiseptic creams and lotions for the treatment of skin diseases. Keywords: antimicrobial activity, cetyl trimethyl ammonium bromide, flower-shape zinc oxide nanoparticles, near-room temperature, sol–gel method, skin disease
科研通智能强力驱动
Strongly Powered by AbleSci AI