计算机科学
软件
分子动力学
领域(数学)
脚本语言
编码(集合论)
可扩展性
计算科学
绘图
并行计算
计算机图形学(图像)
程序设计语言
操作系统
化学
计算化学
数学
集合(抽象数据类型)
纯数学
作者
J. C. Phillips,Rosemary Braun,Wei Wang,James C. Gumbart,Emad Tajkhorshid,Elizabeth Villa,Christophe Chipot,Robert D. Skeel,Laxmikant V. Kalé,Klaus Schulten
摘要
Abstract NAMD is a parallel molecular dynamics code designed for high‐performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high‐end parallel platforms, as well as tens of processors on low‐cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu . © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1781–1802, 2005
科研通智能强力驱动
Strongly Powered by AbleSci AI