CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION

多重共线性 共线性 统计 回归分析 方差膨胀系数 生态学 混淆 线性回归 计量经济学 回归 回归诊断 数学 生物 多项式回归
作者
Michael H. Graham
出处
期刊:Ecology [Wiley]
卷期号:84 (11): 2809-2815 被引量:2148
标识
DOI:10.1890/02-3114
摘要

EcologyVolume 84, Issue 11 p. 2809-2815 Statistical Report CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION Michael H. Graham, Michael H. Graham Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039 USA E-mail: [email protected]Search for more papers by this author Michael H. Graham, Michael H. Graham Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039 USA E-mail: [email protected]Search for more papers by this author First published: 01 November 2003 https://doi.org/10.1890/02-3114Citations: 1,619 Corresponding Editor: A. M. Ellison Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The natural complexity of ecological communities regularly lures ecologists to collect elaborate data sets in which confounding factors are often present. Although multiple regression is commonly used in such cases to test the individual effects of many explanatory variables on a continuous response, the inherent collinearity (multicollinearity) of confounded explanatory variables encumbers analyses and threatens their statistical and inferential interpretation. Using numerical simulations, I quantified the impact of multicollinearity on ecological multiple regression and found that even low levels of collinearity bias analyses (r ≥ 0.28 or r2 ≥ 0.08), causing (1) inaccurate model parameterization, (2) decreased statistical power, and (3) exclusion of significant predictor variables during model creation. Then, using real ecological data, I demonstrated the utility of various statistical techniques for enhancing the reliability and interpretation of ecological multiple regression in the presence of multicollinearity. Citing Literature Supporting Information Filename Description https://dx.doi.org/10.6084/m9.figshare.c.3297932 Research data pertaining to this article is located at figshare.com: Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume84, Issue11November 2003Pages 2809-2815 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郑发布了新的文献求助10
1秒前
yyl发布了新的文献求助10
1秒前
panda_123完成签到,获得积分10
2秒前
Julia完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
7秒前
7秒前
yihuifa完成签到 ,获得积分10
9秒前
西瓜完成签到,获得积分10
9秒前
大方的荟完成签到,获得积分10
10秒前
古铜发布了新的文献求助10
10秒前
西瓜皮发布了新的文献求助10
10秒前
出门见喜发布了新的文献求助10
10秒前
11秒前
王军鹏完成签到 ,获得积分10
13秒前
六七十三发布了新的文献求助10
15秒前
乖猫要努力完成签到,获得积分10
15秒前
小郑完成签到,获得积分10
16秒前
16秒前
17秒前
倔强的大萝卜完成签到,获得积分0
19秒前
19秒前
21秒前
费雪卉发布了新的文献求助10
22秒前
Jimmy完成签到,获得积分10
23秒前
老黑完成签到,获得积分10
25秒前
26秒前
xuesitu发布了新的文献求助10
26秒前
关耳发布了新的文献求助10
26秒前
27秒前
无花果应助芋泥红豆椰椰采纳,获得10
27秒前
嗯嗯发布了新的文献求助200
27秒前
充电宝应助好运連連采纳,获得10
29秒前
故意的寒安完成签到,获得积分10
30秒前
Rosaline完成签到 ,获得积分10
30秒前
英姑应助TWT采纳,获得30
31秒前
析进发布了新的文献求助10
32秒前
小五完成签到 ,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712