Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

蒸散量 水流 地表径流 水文模型 环境科学 融雪 水准点(测量) 水文学(农业) 积雪 计算机科学 离散化 代表(政治) 流量(数学) 地质学 数学 流域 气候学 地貌学 岩土工程 法学 地理 生物 数学分析 政治 几何学 地图学 生态学 政治学 大地测量学
作者
Federico Garavaglia,Matthieu Le Lay,Frédéric Gottardi,Rémy Garçon,Joël Gailhard,Emmanuel Paquet,Thibault Mathevet
出处
期刊:Hydrology and Earth System Sciences 卷期号:21 (8): 3937-3952 被引量:30
标识
DOI:10.5194/hess-21-3937-2017
摘要

Abstract. Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration–validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
刚刚
夜空的光芒完成签到 ,获得积分10
1秒前
1秒前
乐一李完成签到,获得积分10
1秒前
会神完成签到,获得积分20
2秒前
天天快乐应助远方采纳,获得10
4秒前
烟花应助liuq采纳,获得10
4秒前
lixl0725完成签到 ,获得积分10
5秒前
专注秋尽发布了新的文献求助10
5秒前
科研小民工应助研友_LMg7PZ采纳,获得30
6秒前
宸哥完成签到,获得积分10
6秒前
眯眯眼的衬衫应助yanyan采纳,获得10
8秒前
Yue完成签到 ,获得积分10
8秒前
无限的含羞草完成签到,获得积分10
9秒前
大个应助WZ0904采纳,获得10
10秒前
Sofia发布了新的文献求助60
13秒前
14秒前
橘子姐姐发布了新的文献求助10
15秒前
yanyan完成签到,获得积分10
16秒前
TT完成签到,获得积分10
17秒前
17秒前
了然完成签到 ,获得积分10
18秒前
jxp完成签到,获得积分10
18秒前
jojo完成签到 ,获得积分10
19秒前
19秒前
勤劳落雁完成签到 ,获得积分10
19秒前
22秒前
爆米花应助科研通管家采纳,获得30
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
田様应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
RC_Wang应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808