Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

蒸散量 水流 地表径流 水文模型 环境科学 融雪 水准点(测量) 水文学(农业) 积雪 计算机科学 离散化 代表(政治) 流量(数学) 地质学 数学 流域 气候学 地貌学 岩土工程 法学 地理 生物 数学分析 政治 几何学 地图学 生态学 政治学 大地测量学
作者
Federico Garavaglia,Matthieu Le Lay,Frédéric Gottardi,Rémy Garçon,Joël Gailhard,Emmanuel Paquet,Thibault Mathevet
出处
期刊:Hydrology and Earth System Sciences 卷期号:21 (8): 3937-3952 被引量:30
标识
DOI:10.5194/hess-21-3937-2017
摘要

Abstract. Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration–validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czephyr完成签到,获得积分10
1秒前
zz完成签到 ,获得积分10
1秒前
czephyr发布了新的文献求助10
3秒前
江上清风游完成签到,获得积分10
6秒前
hcd12138完成签到,获得积分10
7秒前
9秒前
李爱国应助活泼学生采纳,获得10
11秒前
15秒前
小饼饼完成签到 ,获得积分10
15秒前
情怀应助小小木木采纳,获得10
16秒前
XIAOFA发布了新的文献求助10
16秒前
16秒前
咖啡豆应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
打打应助科研通管家采纳,获得10
18秒前
18秒前
坚强亦丝应助科研通管家采纳,获得10
18秒前
JMrider完成签到,获得积分10
18秒前
Cassie应助cc20231022采纳,获得10
19秒前
19秒前
lgz完成签到,获得积分10
19秒前
sje发布了新的文献求助10
20秒前
脑洞疼应助君莫惜采纳,获得10
21秒前
美满的砖头完成签到 ,获得积分10
21秒前
碧蓝黑夜发布了新的文献求助10
22秒前
22秒前
23秒前
Sophiaaa完成签到 ,获得积分10
24秒前
活泼学生发布了新的文献求助10
25秒前
elle发布了新的文献求助10
27秒前
abc完成签到,获得积分10
27秒前
meini发布了新的文献求助10
27秒前
cc20231022完成签到,获得积分10
28秒前
传奇3应助Christina采纳,获得10
29秒前
惠耷发布了新的文献求助10
31秒前
lshu文应助吴海彤采纳,获得10
34秒前
Cassie应助cc20231022采纳,获得10
34秒前
飘逸凝丝完成签到 ,获得积分20
34秒前
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194