Automated classification of swallowing and breadth sounds

吞咽 计算机科学 特征提取 样本熵 语音识别 模式识别(心理学) 光谱图 人工智能 医学 牙科
作者
Mohammad Aboofazeli,Zahra Moussavi
标识
DOI:10.1109/iembs.2004.1404069
摘要

The goal of this study was to develop an automated and objective method to separate swallowing sounds from breath sounds. Swallowing sound detection can be utilized as part of a system for swallowing mechanism assessment and diagnosis of swallowing dysfunction (dysphagia) by acoustical means. In this study, an algorithm based on multilayer feed forward neural networks is proposed for decomposition of tracheal sound into swallowing and respiratory segments. Among many features examined, root-mean-square of the signal, the average power of the signal over 150-450 Hz and waveform fractal dimension were selected features applied to the neural network as inputs. Findings from previous studies about temporal and durational patterns of swallowing and respiration were used in a smart algorithm for further identification of the swallow and breath segments. The proposed method was applied to 18 tracheal sound recordings of 7 healthy subjects (ages 13-30 years, 4 males). The results were validated manually by visual inspection using airflow measurement and spectrogram of the sounds and auditory means. The algorithm was able to detect 91.7% of swallows correctly. The average of missed swallows and average of false detection were 8.3% and 9.5%, respectively. With additional preprocessing and post processing, the proposed method may be used for automated extraction of swallowing sounds from breath sounds in healthy and dysphagic individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献搬运工完成签到,获得积分10
刚刚
希言自然发布了新的文献求助10
刚刚
所所应助Windlove采纳,获得10
1秒前
1秒前
洁净奄完成签到,获得积分10
3秒前
4秒前
cc完成签到,获得积分20
4秒前
6秒前
6秒前
6秒前
烟花应助悦耳的沛文采纳,获得20
6秒前
bkagyin应助大雪封山采纳,获得10
6秒前
哇哈哈哈发布了新的文献求助10
7秒前
meng完成签到,获得积分10
8秒前
上官若男应助Pagius采纳,获得10
8秒前
星空完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助10
9秒前
领导范儿应助鱼贝贝采纳,获得10
10秒前
粗心的胜发布了新的文献求助10
10秒前
午餐肉完成签到,获得积分10
10秒前
11秒前
小白龙应助欢喜的雁枫采纳,获得10
11秒前
11秒前
小豆发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
宁学者完成签到,获得积分10
14秒前
华仔应助谢谢你变体精灵采纳,获得10
15秒前
飞happyfly完成签到 ,获得积分10
15秒前
cdercder应助热热采纳,获得20
15秒前
18秒前
Akim应助7even采纳,获得10
18秒前
大个应助7even采纳,获得10
18秒前
叶液发布了新的文献求助10
18秒前
非要叫我起个昵称完成签到,获得积分10
20秒前
浚稚完成签到 ,获得积分10
20秒前
orixero应助leng采纳,获得10
20秒前
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571