纳米片
锐钛矿
光催化
材料科学
无定形固体
可见光谱
吸附
X射线光电子能谱
辐照
光化学
催化作用
化学
化学工程
纳米技术
有机化学
工程类
核物理学
物理
光电子学
作者
Lan Lan,Yuanzhi Li,Min Zeng,Mingyang Mao,Lu Ren,Yi Yang,Huihui Liu,Yun Li,Xiujian Zhao
标识
DOI:10.1016/j.apcatb.2016.10.047
摘要
The nanocomposites of amorphous manganese oxide (MnOx) supported on anatase TiO2 nanosheet with dominant {001} facets (TNS) with different Mn/Ti molar ratio were prepared by hydrothermal redox reaction of KMnO4 and Mn(NO3)2 in the presence of TNS. The MnOx/TNS nanocomposites were characterized by XRD, SEM, TEM, ICP, XPS, BET, and diffuse reflectance UV–vis-Infrared adsorption. MnOx/TNS with the optimum Mn/Ti molar ratio of 0.40 exhibits highly efficient photothermocatalytic activity and excellent durability for the oxidation of the recalcitrant and carcinogenic benzene under the full solar spectrum irradiation from a Xe lamp. Remarkably, the CO2 production rate of MnOx/TNS enhances by 99 times as compared to TNS. Impressively, MnOx/TNS also exhibits efficient photocatalytic activity with the visible-infrared irradiation, even with the infrared irradiation. The highly efficient photothermocatalytic activity of MnOx/TNS under the full solar spectrum irradiation originates from the highly efficient solar light-driven thermocatalysis on MnOx due to its strong absorption in entire solar spectrum region and the efficient thermocatalytic activity, which is considerably promoted by a photothermocatalytic synergetic effect. We put insight into the photothermocatalytic synergetic effect by CO temperature-programmed reduction of MnOx/TNS in dark and with the solar light irradiation: the active species generated by the photocatalysis on TNS migrate to MnOx via the MnOx/TiO2 interface, and accelerate the solar light-driven thermocatalysis on MnOx in the nanocomposite.
科研通智能强力驱动
Strongly Powered by AbleSci AI