Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI

特征选择 静息状态功能磁共振成像 支持向量机 前驱期 模式识别(心理学) 人工智能 相关性 图形 心理学 特征(语言学) 认知障碍 线性判别分析 神经科学 认知 计算机科学 数学 理论计算机科学 几何学 哲学 语言学
作者
Seyed Hani Hojjati,Abdoljalil Addeh,Abbas Babajani‐Feremi
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:10 被引量:87
标识
DOI:10.3389/fneur.2019.00904
摘要

Accurate prediction of the early stage of Alzheimer's disease (AD) is important but very challenging. The goal of this study was to utilize predictors for diagnosis conversion to AD based on integrating resting-state functional MRI (rs-fMRI) connectivity analysis and structural MRI (sMRI). We included 177 subjects in this study and aimed at identifying patients with mild cognitive impairment (MCI) who progress to AD, MCI converter (MCI-C), patients with MCI who do not progress to AD, MCI non-converter (MCI-NC), patients with AD, and healthy controls (HC). The graph theory was used to characterize different aspects of the rs-fMRI brain network by calculating measures of integration and segregation. The cortical and subcortical measurements, e.g. cortical thickness, were extracted from sMRI data. The rs-fMRI graph measures were combined with the sMRI measures to construct input features of a support vector machine (SVM) and classify different groups of subjects. Two feature selection algorithms (i.e. the discriminant correlation analysis (DCA) and sequential feature collection (SFC)) were used for feature reduction and selecting a subset of optimal features. Maximum accuracy of 67% and 56% for three-group ("AD, MCI-C, and MCI-NC" or "MCI-C, MCI-NC, and HC") and four-group ("AD, MCI-C, MCI-NC, and HC") classification, respectively, were obtained with the SFC feature selection algorithm. We also identified hub nodes in the rs-fMRI brain network which were associated with the early stage of AD. Our results demonstrated the potential of the proposed method based on integration of the functional and structural MRI for identification of the early stage of AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助nieanicole采纳,获得10
刚刚
英姑应助耍酷的指甲油采纳,获得10
刚刚
斐然诗完成签到,获得积分10
1秒前
1秒前
科研通AI5应助wxh采纳,获得10
1秒前
1秒前
董石美完成签到,获得积分20
1秒前
1秒前
2秒前
moxi摩西发布了新的文献求助10
2秒前
xiaoqi发布了新的文献求助10
3秒前
小马甲应助Lvj采纳,获得10
3秒前
4秒前
YJ发布了新的文献求助10
4秒前
科研通AI5应助拾柒采纳,获得10
4秒前
落寞丹萱发布了新的文献求助10
4秒前
5秒前
5秒前
云里发布了新的文献求助10
5秒前
小杨发布了新的文献求助10
6秒前
血红蛋白发布了新的文献求助10
6秒前
雨中尘埃发布了新的文献求助10
6秒前
共享精神应助科研小狗采纳,获得30
7秒前
Jasper应助dingd3采纳,获得10
7秒前
7秒前
yu关注了科研通微信公众号
7秒前
YDL发布了新的文献求助10
8秒前
善学以致用应助落寞丹萱采纳,获得10
9秒前
小王发布了新的文献求助10
13秒前
14秒前
轩轩好厉害完成签到,获得积分10
14秒前
16秒前
18秒前
18秒前
18秒前
学渣完成签到 ,获得积分10
19秒前
可许发布了新的文献求助30
20秒前
大闲鱼铭一完成签到 ,获得积分10
21秒前
wxh发布了新的文献求助10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542666
求助须知:如何正确求助?哪些是违规求助? 3120072
关于积分的说明 9341436
捐赠科研通 2818131
什么是DOI,文献DOI怎么找? 1549355
邀请新用户注册赠送积分活动 722120
科研通“疑难数据库(出版商)”最低求助积分说明 712944