Identification of the Early Stage of Alzheimer's Disease Using Structural MRI and Resting-State fMRI

特征选择 静息状态功能磁共振成像 支持向量机 前驱期 模式识别(心理学) 人工智能 相关性 图形 心理学 特征(语言学) 认知障碍 线性判别分析 神经科学 认知 计算机科学 数学 几何学 语言学 哲学 理论计算机科学
作者
Seyed Hani Hojjati,Abdoljalil Addeh,Abbas Babajani‐Feremi
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:10 被引量:87
标识
DOI:10.3389/fneur.2019.00904
摘要

Accurate prediction of the early stage of Alzheimer's disease (AD) is important but very challenging. The goal of this study was to utilize predictors for diagnosis conversion to AD based on integrating resting-state functional MRI (rs-fMRI) connectivity analysis and structural MRI (sMRI). We included 177 subjects in this study and aimed at identifying patients with mild cognitive impairment (MCI) who progress to AD, MCI converter (MCI-C), patients with MCI who do not progress to AD, MCI non-converter (MCI-NC), patients with AD, and healthy controls (HC). The graph theory was used to characterize different aspects of the rs-fMRI brain network by calculating measures of integration and segregation. The cortical and subcortical measurements, e.g. cortical thickness, were extracted from sMRI data. The rs-fMRI graph measures were combined with the sMRI measures to construct input features of a support vector machine (SVM) and classify different groups of subjects. Two feature selection algorithms (i.e. the discriminant correlation analysis (DCA) and sequential feature collection (SFC)) were used for feature reduction and selecting a subset of optimal features. Maximum accuracy of 67% and 56% for three-group ("AD, MCI-C, and MCI-NC" or "MCI-C, MCI-NC, and HC") and four-group ("AD, MCI-C, MCI-NC, and HC") classification, respectively, were obtained with the SFC feature selection algorithm. We also identified hub nodes in the rs-fMRI brain network which were associated with the early stage of AD. Our results demonstrated the potential of the proposed method based on integration of the functional and structural MRI for identification of the early stage of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的醉波完成签到,获得积分10
刚刚
刚刚
1秒前
狂野梦玉发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
内向映天完成签到 ,获得积分10
2秒前
五氧化二磷完成签到,获得积分10
2秒前
研友_VZG7GZ应助灵魂采纳,获得10
3秒前
3w学术发布了新的文献求助10
3秒前
3秒前
3秒前
Always发布了新的文献求助10
3秒前
4秒前
Phil丶发布了新的文献求助10
4秒前
SciGPT应助搞怪的雨南采纳,获得10
4秒前
4秒前
Aspirin完成签到,获得积分10
4秒前
XHY发布了新的文献求助10
5秒前
热情的夏完成签到,获得积分10
5秒前
爆米花应助proton采纳,获得10
5秒前
5秒前
挖掘机给Linly的求助进行了留言
5秒前
陶军辉发布了新的文献求助10
5秒前
雪糕发布了新的文献求助10
5秒前
大个应助klyre采纳,获得10
6秒前
Leo发布了新的文献求助30
6秒前
joyce930728发布了新的文献求助10
7秒前
六六大顺完成签到,获得积分10
7秒前
SHAO应助yjc采纳,获得10
7秒前
xzn1123应助现代的无春采纳,获得10
7秒前
依依完成签到,获得积分10
8秒前
爆米花应助沉默傲芙采纳,获得10
8秒前
黑面包发布了新的文献求助10
8秒前
8秒前
MTF发布了新的文献求助10
8秒前
1391451653完成签到,获得积分10
9秒前
October完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002