CD2A: Concept Drift Detection Approach Toward Imbalanced Data Stream

概念漂移 数据流 计算机科学 数据流挖掘 流式数据 数据挖掘 GSM演进的增强数据速率 大数据 人工智能 电信
作者
Mohammed Ahmed Ali Abdualrhman,M. C. Padma
出处
期刊:Lecture notes in electrical engineering 被引量:3
标识
DOI:10.1007/978-981-13-5802-9_54
摘要

In recent years, data stream has been considered as one of the primary sources of big data. Data stream has grown very rapidly in the last decades. Data stream environment has many features distinguishing the batch learning data which arrives on the fly with high speed. Data stream mining has attracted research focus due to its presence in many real-time applications such as telecommunication, networking, and banking. One of the most important challenges in data stream is the distribution of data is changing continuously which is leading to the phenomenon called “concept drift.” Another issue for streaming data is dealing with imbalanced class in the dataset. Many classification algorithms have been made to cope with the concept drift; however, many of them are dealing with the drift from the balanced data. In this paper, we propose a model called “CD2A: Concept Drift Detection Approach Toward Imbalanced Data Stream” which aims to handle the imbalanced data and detect the concept drift and behave equally with different types of drift. The algorithm was evaluated on real and synthetic dataset and compared with leading edge methods AWE, SMOTE, SERA, and OOB. Our method performs significantly better average prediction accuracy than the other compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助林新宇采纳,获得10
刚刚
风起人散发布了新的文献求助10
刚刚
he完成签到,获得积分10
1秒前
木木完成签到,获得积分10
1秒前
1秒前
hs完成签到,获得积分10
1秒前
Yy完成签到,获得积分10
2秒前
2秒前
2秒前
Ava应助ZDM6094采纳,获得10
3秒前
3秒前
3秒前
angel完成签到,获得积分10
3秒前
crispy发布了新的文献求助10
3秒前
假不贾发布了新的文献求助10
4秒前
feiyang发布了新的文献求助10
4秒前
wzyyyyue发布了新的文献求助30
4秒前
玉耀发布了新的文献求助20
4秒前
GHJK发布了新的文献求助10
5秒前
隐形曼青应助Gloven采纳,获得10
5秒前
miaomiao完成签到,获得积分10
5秒前
才下眉头完成签到,获得积分10
6秒前
英吉利25发布了新的文献求助10
7秒前
科研通AI6应助chenyufeng采纳,获得10
7秒前
qwert完成签到,获得积分10
7秒前
7秒前
小蘑菇应助迷路从波采纳,获得10
8秒前
u2u2完成签到,获得积分10
8秒前
林新宇发布了新的文献求助10
8秒前
一玥完成签到,获得积分10
8秒前
CNY完成签到 ,获得积分10
9秒前
xiaohan完成签到 ,获得积分20
9秒前
9秒前
tianzml0应助昵称未命名采纳,获得60
9秒前
QING完成签到,获得积分20
10秒前
10秒前
小孙的微信完成签到,获得积分10
11秒前
ziyue驳回了Jared应助
11秒前
勤奋初之发布了新的文献求助30
11秒前
youshower完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742