医学
甲状腺间变性癌
甲状腺癌
免疫组织化学
甲状腺
癌症
甲状腺乳突癌
肿瘤科
癌症研究
内科学
免疫疗法
PD-L1
病理
作者
Guoqiang Zhang,Weijun Wei,Hong-Jun Song,Ziyong Sun,Ce Shen,Xinyun Zhang,Xiaoyue Chen,Zhong-Ling Qiu,Quan‐Yong Luo
摘要
Objective: Programmed cell death–ligand 1 (PD-L1) expression on tumor tissue has been associated with favorable response to anti–programmed cell death–receptor 1/PD-L1 therapy in many human cancers. Studies have reported that PD-L1 is also expressed in thyroid cancer. The objective of this paper is to introduce the potential predictive and therapeutic values of PD-L1 in thyroid cancer. Methods: A literature search was conducted in the PubMed database using the terms “PD-L1,” “B7-H1,” and “thyroid cancer.” PD-L1 positivity was determined by immunohistochemical assay. Results: The frequency of PD-L1 positivity in different studies ranged from 6.1 to 82.5% in papillary thyroid cancer (PTC) patients and 22.2 to 81.2% in anaplastic thyroid cancer (ATC) patients. PD-L1 positivity rate was higher in ATC than in PTC within the same studies, and its expression intensity was significantly higher in tumor tissue than in the corresponding nontumor thyroid tissues. Moreover, PD-L1 expression was positively associated with the aggressiveness and recurrence of thyroid cancers and negatively associated with the differentiation status and outcomes. PD-L1 checkpoint pathway blockade may emerge as a promising therapeutic target in the treatment of thyroid cancers. Conclusion: PD-L1 is a potential biomarker to predict the recurrence and prognosis of thyroid cancers. It is also a novel immunotherapy target for optimizing the management landscape of radioiodine-refractory and ATCs. Abbreviations: ATC = anaplastic thyroid cancer; DTC = differentiated thyroid cancer; IHC = immunohistochemical; OS = overall survival; PD-1 = programmed cell death–receptor 1; PD-L1 = programmed cell death–ligand 1; PD-L2 = programmed cell death–ligand 2; PTC = papillary thyroid cancer; TNM = tumor-node-metastasis; Treg = regulatory T cell
科研通智能强力驱动
Strongly Powered by AbleSci AI