亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists

医学 甲状腺结节 放射科 甲状腺 结核(地质) 医学诊断 卷积神经网络 活检 人工智能 深度学习 内科学 计算机科学 生物 古生物学
作者
Mateusz Buda,Benjamin Wildman-Tobriner,Jenny K. Hoang,David Thayer,Franklin N. Tessler,William D. Middleton,Maciej A. Mazurowski
出处
期刊:Radiology [Radiological Society of North America]
卷期号:292 (3): 695-701 被引量:134
标识
DOI:10.1148/radiol.2019181343
摘要

BackgroundManagement of thyroid nodules may be inconsistent between different observers and time consuming for radiologists. An artificial intelligence system that uses deep learning may improve radiology workflow for management of thyroid nodules.PurposeTo develop a deep learning algorithm that uses thyroid US images to decide whether a thyroid nodule should undergo a biopsy and to compare the performance of the algorithm with the performance of radiologists who adhere to American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS).Materials and MethodsIn this retrospective analysis, studies in patients referred for US with subsequent fine-needle aspiration or with surgical histologic analysis used as the standard were evaluated. The study period was from August 2006 to May 2010. A multitask deep convolutional neural network was trained to provide biopsy recommendations for thyroid nodules on the basis of two orthogonal US images as the input. In the training phase, the deep learning algorithm was first evaluated by using 10-fold cross-validation. Internal validation was then performed on an independent set of 99 consecutive nodules. The sensitivity and specificity of the algorithm were compared with a consensus of three ACR TI-RADS committee experts and nine other radiologists, all of whom interpreted thyroid US images in clinical practice.ResultsIncluded were 1377 thyroid nodules in 1230 patients with complete imaging data and conclusive cytologic or histologic diagnoses. For the 99 test nodules, the proposed deep learning algorithm achieved 13 of 15 (87%: 95% confidence interval [CI]: 67%, 100%) sensitivity, the same as expert consensus (P > .99) and higher than five of nine radiologists. The specificity of the deep learning algorithm was 44 of 84 (52%; 95% CI: 42%, 62%), which was similar to expert consensus (43 of 84; 51%; 95% CI: 41%, 62%; P = .91) and higher than seven of nine other radiologists. The mean sensitivity and specificity for the nine radiologists was 83% (95% CI: 64%, 98%) and 48% (95% CI: 37%, 59%), respectively.ConclusionSensitivity and specificity of a deep learning algorithm for thyroid nodule biopsy recommendations was similar to that of expert radiologists who used American College of Radiology Thyroid Imaging and Reporting Data System guidelines.© RSNA, 2019Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
hc发布了新的文献求助10
8秒前
小二郎应助hc采纳,获得10
21秒前
lll发布了新的文献求助30
28秒前
小白菜完成签到,获得积分10
32秒前
小蘑菇应助乐乐采纳,获得10
46秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
IIIIIllllIIII完成签到,获得积分10
1分钟前
Enns完成签到 ,获得积分10
1分钟前
1分钟前
lll发布了新的文献求助10
1分钟前
lyc45491314发布了新的文献求助10
2分钟前
2分钟前
2分钟前
lll完成签到,获得积分10
2分钟前
2分钟前
lll发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
有人应助lll采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
PePsi完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
lijiauyi1994发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059624
关于积分的说明 9067236
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1508990
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896