Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks

卷积神经网络 绝缘体(电) 航空影像 计算机科学 计算机视觉 分割 电力传输 目标检测 稳健性(进化) 深度学习 人工智能 模式识别(心理学) 工程类 图像(数学) 电气工程 基因 化学 生物化学
作者
Xu Tao,Dapeng Zhang,Zihao Wang,Xiaoyang Liu,Hongyan Zhang,De Xu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (4): 1486-1498 被引量:379
标识
DOI:10.1109/tsmc.2018.2871750
摘要

As the failure of power line insulators leads to the failure of power transmission systems, an insulator inspection system based on an aerial platform is widely used. Insulator defect detection is performed against complex backgrounds in aerial images, presenting an interesting but challenging problem. Traditional methods, based on handcrafted features or shallow learning techniques, can only localize insulators and detect faults under specific detection conditions, such as when sufficient prior knowledge is available, with low background interference, at certain object scales, or under specific illumination conditions. This paper discusses the automatic detection of insulator defects using aerial images, accurately localizing insulator defects appearing in input images captured from real inspection environments. We propose a novel deep convolutional neural network (CNN) cascading architecture for performing localization and detecting defects in insulators. The cascading network uses a CNN based on a region proposal network to transform defect inspection into a two-level object detection problem. To address the scarcity of defect images in a real inspection environment, a data augmentation method is also proposed that includes four operations: 1) affine transformation; 2) insulator segmentation and background fusion; 3) Gaussian blur; and 4) brightness transformation. Defect detection precision and recall of the proposed method are 0.91 and 0.96 using a standard insulator dataset, and insulator defects under various conditions can be successfully detected. Experimental results demonstrate that this method meets the robustness and accuracy requirements for insulator defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助天润佳苑采纳,获得10
4秒前
CodeCraft应助哇卡哇卡采纳,获得10
4秒前
冰冰完成签到,获得积分20
6秒前
6秒前
义气剑通发布了新的文献求助10
7秒前
town1223完成签到 ,获得积分10
7秒前
8秒前
冰冰发布了新的文献求助10
8秒前
young_joint完成签到,获得积分10
9秒前
zz发布了新的文献求助10
10秒前
11秒前
13秒前
不懂白完成签到 ,获得积分10
13秒前
飞快的语蕊完成签到,获得积分10
13秒前
15秒前
星星气球发布了新的文献求助10
19秒前
asapshaozhu发布了新的文献求助10
20秒前
20秒前
852应助成就的连虎采纳,获得10
20秒前
zz完成签到,获得积分20
21秒前
21秒前
MMM关闭了MMM文献求助
23秒前
23秒前
lihh发布了新的文献求助10
25秒前
kwb发布了新的文献求助10
27秒前
85完成签到,获得积分10
28秒前
一指墨发布了新的文献求助10
29秒前
小马甲应助zz采纳,获得10
32秒前
杳鸢应助冰冰采纳,获得10
33秒前
34秒前
35秒前
37秒前
koko关注了科研通微信公众号
38秒前
wzgkeyantong发布了新的文献求助10
39秒前
Orange应助某某某采纳,获得10
42秒前
天润佳苑发布了新的文献求助10
43秒前
yuekun发布了新的文献求助10
43秒前
48秒前
过儿完成签到,获得积分10
51秒前
51秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380984
求助须知:如何正确求助?哪些是违规求助? 2996028
关于积分的说明 8766809
捐赠科研通 2681168
什么是DOI,文献DOI怎么找? 1468427
科研通“疑难数据库(出版商)”最低求助积分说明 678988
邀请新用户注册赠送积分活动 671049