卷积神经网络
绝缘体(电)
航空影像
计算机科学
计算机视觉
分割
电力传输
目标检测
稳健性(进化)
深度学习
人工智能
模式识别(心理学)
工程类
图像(数学)
电气工程
基因
化学
生物化学
作者
Xu Tao,Dapeng Zhang,Zihao Wang,Xiaoyang Liu,Hongyan Zhang,De Xu
出处
期刊:IEEE transactions on systems, man, and cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2020-04-01
卷期号:50 (4): 1486-1498
被引量:379
标识
DOI:10.1109/tsmc.2018.2871750
摘要
As the failure of power line insulators leads to the failure of power transmission systems, an insulator inspection system based on an aerial platform is widely used. Insulator defect detection is performed against complex backgrounds in aerial images, presenting an interesting but challenging problem. Traditional methods, based on handcrafted features or shallow learning techniques, can only localize insulators and detect faults under specific detection conditions, such as when sufficient prior knowledge is available, with low background interference, at certain object scales, or under specific illumination conditions. This paper discusses the automatic detection of insulator defects using aerial images, accurately localizing insulator defects appearing in input images captured from real inspection environments. We propose a novel deep convolutional neural network (CNN) cascading architecture for performing localization and detecting defects in insulators. The cascading network uses a CNN based on a region proposal network to transform defect inspection into a two-level object detection problem. To address the scarcity of defect images in a real inspection environment, a data augmentation method is also proposed that includes four operations: 1) affine transformation; 2) insulator segmentation and background fusion; 3) Gaussian blur; and 4) brightness transformation. Defect detection precision and recall of the proposed method are 0.91 and 0.96 using a standard insulator dataset, and insulator defects under various conditions can be successfully detected. Experimental results demonstrate that this method meets the robustness and accuracy requirements for insulator defect detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI