亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Channel selection in motor imaginary-based brain-computer interfaces: a particle swarm optimization algorithm

粒子群优化 脑-机接口 计算机科学 接口(物质) 频道(广播) 多群优化 群体行为 集合(抽象数据类型) 模式识别(心理学) 二进制数 遗传算法 人工智能 算法 数学 机器学习 脑电图 最大气泡压力法 精神科 算术 气泡 并行计算 计算机网络 心理学 程序设计语言
作者
Lei Zhang,Qingguo Wei
出处
期刊:Journal of Integrative Neuroscience [IMR Press]
卷期号:18 (2): 141-141 被引量:14
标识
DOI:10.31083/j.jin.2019.02.17
摘要

The number of electrode channels in a brain-computer interface affects not only its classification performance, but also its convenience in practical applications. However, an effective method for determining the number of channels has not yet been established for motor imagery-based brain-computer interfaces. This paper proposes a novel evolutionary search algorithm, binary quantum-behaved particle swarm optimization, for channel selection, which is implemented in a wrapping manner, coupling common spatial pattern for feature extraction, and support vector machine for classification. The fitness function of binary quantum-behaved particle swarm optimization is defined as the weighted sum of classification error rate and relative number of channels. The classification performance of the binary quantum-behaved particle swarm optimization-based common spatial pattern was evaluated on an electroencephalograph data set and an electrocorticography data set. It was subsequently compared with that of other three common spatial pattern methods: using the channels selected by binary particle swarm optimization, all channels in raw data sets, and channels selected manually. Experimental results showed that the proposed binary quantum-behaved particle swarm optimization-based common spatial pattern method outperformed the other three common spatial pattern methods, significantly decreasing the classification error rate and number of channels, as compared to the common spatial pattern method using whole channels in raw data sets. The proposed method can significantly improve the practicability and convenience of a motor imagery-based brain-computer interface system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QQ发布了新的文献求助10
4秒前
5秒前
刚子完成签到 ,获得积分0
8秒前
缥缈雯发布了新的文献求助10
14秒前
甜甜纸飞机完成签到 ,获得积分10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
gexzygg应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
晓奕应助科研通管家采纳,获得10
21秒前
shhoing应助科研通管家采纳,获得10
21秒前
充电宝应助安贝的呐喊采纳,获得10
26秒前
顾矜应助缥缈雯采纳,获得10
26秒前
甜甜的紫菜完成签到 ,获得积分10
27秒前
qq完成签到 ,获得积分10
33秒前
韩学冲完成签到 ,获得积分10
43秒前
白色蒲公英完成签到,获得积分10
44秒前
sujiaoziemo完成签到,获得积分10
50秒前
BowieHuang应助Freshman采纳,获得10
51秒前
一行完成签到,获得积分10
1分钟前
iman完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
缥缈雯发布了新的文献求助10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
暴躁的鱼完成签到 ,获得积分10
1分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ff发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
思源应助kaia采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488