Extracting and summarizing affective features and responses from online product descriptions and reviews: A Kansei text mining approach

感性 计算机科学 产品(数学) 自然语言处理 情绪分析 情报检索 人工智能 数据科学 几何学 数学
作者
W.M. Wang,Zhi Li,Z.G. Tian,Juan Wang,Mei Na Cheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:73: 149-162 被引量:116
标识
DOI:10.1016/j.engappai.2018.05.005
摘要

Today’s product design takes into account the affective aspects of products, such as aesthetics and comfort, as much as reliability and physical quality. Manufacturers need to understand the consumers’ affective preferences and responses to product features in order to improve their products. Conventional approaches use manual methods, such as questionnaires and surveys, to discover product features and affective preferences, and then correlate their relationships. This is one-time, labour-intensive, and time-consuming process. There is a need to develop an automated and unsupervised method to efficiently identify the affective information. In particular, text mining is an automatic approach to extract useful information from text, while Kansei engineering studies product affective attributes. In this paper, we propose a Kansei text mining approach which incorporates text mining and Kansei engineering approaches to automatically extract and summarize product features and their corresponding affective responses based on online product descriptions and consumer reviews. Users can efficiently and timely review the affective aspects of the products. In order to evaluate the effectiveness of the proposed approach, experiments have been conducted on the basis of public data from Amazon.com. The results showed that the proposed approach can effectively identify the affective information in terms of feature–affective opinions. In addition, we have developed a prototype system that visualizes product features, affective attributes, affective keywords, and their relationships. The proposed approach not only helps consumers making purchase decisions, but also helps manufacturers understanding their products and competitors’ products, which might provide insights into their product development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适静丹完成签到,获得积分10
刚刚
鱼女士完成签到,获得积分10
1秒前
1秒前
LIUUU完成签到,获得积分10
1秒前
科研通AI2S应助Jenny采纳,获得30
2秒前
棉籽完成签到 ,获得积分10
3秒前
独特纸飞机完成签到 ,获得积分10
4秒前
Yolo完成签到,获得积分10
5秒前
夜话风陵杜完成签到 ,获得积分0
7秒前
彩色完成签到,获得积分10
7秒前
Tina完成签到 ,获得积分10
8秒前
TANG完成签到 ,获得积分10
9秒前
巧克力手印完成签到,获得积分10
9秒前
852应助七夜采纳,获得10
10秒前
223311完成签到,获得积分10
12秒前
dong完成签到 ,获得积分10
13秒前
14秒前
大模型应助科研小白采纳,获得10
14秒前
石勒苏益格完成签到,获得积分10
16秒前
小大夫完成签到 ,获得积分10
16秒前
让我康康完成签到,获得积分20
16秒前
林子博完成签到,获得积分20
17秒前
eee完成签到,获得积分10
18秒前
18秒前
选择性哑巴完成签到 ,获得积分10
19秒前
巾凡完成签到 ,获得积分10
20秒前
21秒前
NexusExplorer应助yiyayy采纳,获得10
24秒前
友好傲白完成签到,获得积分10
24秒前
ccx发布了新的文献求助10
25秒前
沉默士萧完成签到,获得积分10
25秒前
贾苏戏发布了新的文献求助30
25秒前
科研小白发布了新的文献求助10
25秒前
哎呀呀完成签到,获得积分10
25秒前
26秒前
小林子完成签到,获得积分10
27秒前
yk完成签到 ,获得积分10
29秒前
一只五条悟完成签到,获得积分10
29秒前
科研小白完成签到,获得积分10
29秒前
深情安青应助贾苏戏采纳,获得10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248917
求助须知:如何正确求助?哪些是违规求助? 2892299
关于积分的说明 8270565
捐赠科研通 2560582
什么是DOI,文献DOI怎么找? 1389114
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627855