Predictive modeling of wildfires: A new dataset and machine learning approach

计算机科学 大数据 随机森林 支持向量机 中分辨率成像光谱仪 机器学习 遥感 归一化差异植被指数 人工神经网络 深度学习 自然灾害 卫星 人工智能 数据挖掘 气候变化 气象学 地理 工程类 生物 航空航天工程 生态学
作者
Younes Oulad Sayad,Hajar Mousannif,Hassan Al Moatassime
出处
期刊:Fire Safety Journal [Elsevier]
卷期号:104: 130-146 被引量:167
标识
DOI:10.1016/j.firesaf.2019.01.006
摘要

Wildfires, whether natural or caused by humans, are considered among the most dangerous and devastating disasters around the world. Their complexity comes from the fact that they are hard to predict, hard to extinguish and cause enormous financial losses. To address this issue, many research efforts have been conducted in order to monitor, predict and prevent wildfires using several Artificial Intelligence techniques and strategies such as Big Data, Machine Learning, and Remote Sensing. The latter offers a rich source of satellite images, from which we can retrieve a huge amount of data that can be used to monitor wildfires. The method used in this paper combines Big Data, Remote Sensing and Data Mining algorithms (Artificial Neural Network and SVM) to process data collected from satellite images over large areas and extract insights from them to predict the occurrence of wildfires and avoid such disasters. For this reason, we implemented a methodology that serves this purpose by building a dataset based on Remote Sensing data related to the state of the crops (NDVI), meteorological conditions (LST), as well as the fire indicator “Thermal Anomalies”, these data, were acquired from “MODIS” (Moderate Resolution Imaging Spectroradiometer), a key instrument aboard the Terra and Aqua satellites. This dataset is available on GitHub via this link (https://github.com/ouladsayadyounes/Wildfires). Experiments were made using the big data platform “Databricks”. Experimental results gave high prediction accuracy (98.32%). These results were assessed using several validation strategies (e.g., classification metrics, cross-validation, and regularization) as well as a comparison with some wildfire early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu发布了新的文献求助10
刚刚
刚刚
要吃虾饺吗完成签到,获得积分10
1秒前
苏苏完成签到,获得积分10
1秒前
CC完成签到,获得积分10
2秒前
小白完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
XinyiZhang完成签到,获得积分10
3秒前
Equation1019完成签到,获得积分10
3秒前
唐太君发布了新的文献求助10
4秒前
达瓦里氏完成签到 ,获得积分10
5秒前
充电宝应助jhanfglin采纳,获得10
5秒前
吃人陈完成签到,获得积分10
5秒前
奥利奥完成签到,获得积分10
5秒前
一颗野生橘子完成签到,获得积分10
6秒前
内永绘里发布了新的文献求助10
6秒前
柑橘发布了新的文献求助10
6秒前
wanci应助wsh采纳,获得10
7秒前
糟糕的学姐完成签到,获得积分10
7秒前
阳佟雨南完成签到,获得积分10
8秒前
zxh发布了新的文献求助10
9秒前
微笑驳完成签到 ,获得积分10
9秒前
9秒前
村上种树完成签到,获得积分10
10秒前
爱游泳的咸鱼完成签到,获得积分10
10秒前
善学以致用应助Yu采纳,获得10
10秒前
英俊的铭应助白耳猫采纳,获得10
11秒前
ESLG完成签到 ,获得积分10
11秒前
Michelle完成签到,获得积分20
11秒前
CodeCraft应助内永绘里采纳,获得10
12秒前
忘忧完成签到,获得积分10
12秒前
所所应助优美丹雪采纳,获得10
13秒前
14秒前
华仔应助务实的焦采纳,获得10
14秒前
KXX完成签到,获得积分10
14秒前
3033完成签到,获得积分20
14秒前
14秒前
万能图书馆应助小羊采纳,获得10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443