已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive modeling of wildfires: A new dataset and machine learning approach

计算机科学 大数据 随机森林 支持向量机 中分辨率成像光谱仪 机器学习 遥感 归一化差异植被指数 人工神经网络 深度学习 自然灾害 卫星 人工智能 数据挖掘 气候变化 气象学 地理 工程类 生态学 生物 航空航天工程
作者
Younes Oulad Sayad,Hajar Mousannif,Hassan Al Moatassime
出处
期刊:Fire Safety Journal [Elsevier]
卷期号:104: 130-146 被引量:296
标识
DOI:10.1016/j.firesaf.2019.01.006
摘要

Wildfires, whether natural or caused by humans, are considered among the most dangerous and devastating disasters around the world. Their complexity comes from the fact that they are hard to predict, hard to extinguish and cause enormous financial losses. To address this issue, many research efforts have been conducted in order to monitor, predict and prevent wildfires using several Artificial Intelligence techniques and strategies such as Big Data, Machine Learning, and Remote Sensing. The latter offers a rich source of satellite images, from which we can retrieve a huge amount of data that can be used to monitor wildfires. The method used in this paper combines Big Data, Remote Sensing and Data Mining algorithms (Artificial Neural Network and SVM) to process data collected from satellite images over large areas and extract insights from them to predict the occurrence of wildfires and avoid such disasters. For this reason, we implemented a methodology that serves this purpose by building a dataset based on Remote Sensing data related to the state of the crops (NDVI), meteorological conditions (LST), as well as the fire indicator “Thermal Anomalies”, these data, were acquired from “MODIS” (Moderate Resolution Imaging Spectroradiometer), a key instrument aboard the Terra and Aqua satellites. This dataset is available on GitHub via this link (https://github.com/ouladsayadyounes/Wildfires). Experiments were made using the big data platform “Databricks”. Experimental results gave high prediction accuracy (98.32%). These results were assessed using several validation strategies (e.g., classification metrics, cross-validation, and regularization) as well as a comparison with some wildfire early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆圆子完成签到 ,获得积分10
2秒前
二牛完成签到,获得积分10
3秒前
suxili完成签到 ,获得积分10
4秒前
BH完成签到,获得积分20
5秒前
高天雨完成签到 ,获得积分10
7秒前
77完成签到 ,获得积分10
7秒前
yuanyuan完成签到,获得积分10
8秒前
Akim应助flower采纳,获得10
9秒前
苏幕遮发布了新的文献求助10
11秒前
genshin发布了新的文献求助20
11秒前
小小发布了新的文献求助10
11秒前
12秒前
务实的一斩完成签到 ,获得积分10
12秒前
cc完成签到 ,获得积分10
13秒前
彭于晏应助计划采纳,获得30
13秒前
14秒前
临河盗龙完成签到,获得积分10
14秒前
16秒前
bkagyin应助cc采纳,获得10
16秒前
cciocio发布了新的文献求助10
17秒前
史昊昊发布了新的文献求助10
19秒前
20秒前
无花果应助苏幕遮采纳,获得10
21秒前
wanci应助满意妙梦采纳,获得10
22秒前
爱笑的羊青完成签到,获得积分10
22秒前
ding应助张家璐采纳,获得10
23秒前
Amelia完成签到 ,获得积分10
24秒前
特特雷珀萨努完成签到 ,获得积分10
24秒前
sunnn完成签到 ,获得积分10
26秒前
cc关注了科研通微信公众号
26秒前
27秒前
水刃木完成签到,获得积分10
28秒前
28秒前
Rose994477完成签到,获得积分10
29秒前
FashionBoy应助史昊昊采纳,获得10
29秒前
Cmqq完成签到,获得积分20
30秒前
lzxucn完成签到,获得积分10
31秒前
32秒前
走走发布了新的文献求助10
32秒前
cc发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599579
求助须知:如何正确求助?哪些是违规求助? 4685304
关于积分的说明 14838289
捐赠科研通 4669300
什么是DOI,文献DOI怎么找? 2538085
邀请新用户注册赠送积分活动 1505488
关于科研通互助平台的介绍 1470859