Predictive modeling of wildfires: A new dataset and machine learning approach

计算机科学 大数据 随机森林 支持向量机 中分辨率成像光谱仪 机器学习 遥感 归一化差异植被指数 人工神经网络 深度学习 自然灾害 卫星 人工智能 数据挖掘 气候变化 气象学 地理 工程类 生物 航空航天工程 生态学
作者
Younes Oulad Sayad,Hajar Mousannif,Hassan Al Moatassime
出处
期刊:Fire Safety Journal [Elsevier BV]
卷期号:104: 130-146 被引量:167
标识
DOI:10.1016/j.firesaf.2019.01.006
摘要

Wildfires, whether natural or caused by humans, are considered among the most dangerous and devastating disasters around the world. Their complexity comes from the fact that they are hard to predict, hard to extinguish and cause enormous financial losses. To address this issue, many research efforts have been conducted in order to monitor, predict and prevent wildfires using several Artificial Intelligence techniques and strategies such as Big Data, Machine Learning, and Remote Sensing. The latter offers a rich source of satellite images, from which we can retrieve a huge amount of data that can be used to monitor wildfires. The method used in this paper combines Big Data, Remote Sensing and Data Mining algorithms (Artificial Neural Network and SVM) to process data collected from satellite images over large areas and extract insights from them to predict the occurrence of wildfires and avoid such disasters. For this reason, we implemented a methodology that serves this purpose by building a dataset based on Remote Sensing data related to the state of the crops (NDVI), meteorological conditions (LST), as well as the fire indicator “Thermal Anomalies”, these data, were acquired from “MODIS” (Moderate Resolution Imaging Spectroradiometer), a key instrument aboard the Terra and Aqua satellites. This dataset is available on GitHub via this link (https://github.com/ouladsayadyounes/Wildfires). Experiments were made using the big data platform “Databricks”. Experimental results gave high prediction accuracy (98.32%). These results were assessed using several validation strategies (e.g., classification metrics, cross-validation, and regularization) as well as a comparison with some wildfire early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
smartlailai发布了新的文献求助10
刚刚
单薄广山完成签到,获得积分10
刚刚
共享精神应助洪山老狗采纳,获得10
1秒前
zyj完成签到,获得积分10
2秒前
zrs关闭了zrs文献求助
2秒前
杨雪妮发布了新的文献求助10
3秒前
Suraim发布了新的文献求助10
3秒前
斯文败类应助BABY五齿采纳,获得10
3秒前
Ann发布了新的文献求助10
3秒前
zhhr发布了新的文献求助10
3秒前
Liooo完成签到 ,获得积分10
4秒前
CZN发布了新的文献求助10
4秒前
5秒前
打打应助无聊的南松采纳,获得10
5秒前
jenningseastera应助阿胡采纳,获得30
6秒前
6秒前
1433223完成签到,获得积分10
6秒前
温柔的尔丝完成签到,获得积分10
6秒前
哈哈哈我要查文献完成签到 ,获得积分10
7秒前
勤勤的新星完成签到,获得积分10
8秒前
Dky_安静的初夏应助青青草采纳,获得10
8秒前
大大的西瓜完成签到 ,获得积分10
8秒前
杉杉来吃完成签到,获得积分10
8秒前
9秒前
smartlailai完成签到,获得积分10
9秒前
Lucas应助稳重绿旋采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
ccccccp完成签到,获得积分10
11秒前
格桑发布了新的文献求助10
11秒前
林登万完成签到,获得积分10
12秒前
Inory007发布了新的文献求助10
12秒前
Xlx完成签到,获得积分10
12秒前
上官若男应助松松松采纳,获得10
13秒前
Lance先生完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942