Closed-loop EEG study on visual recognition during driving

脑-机接口 计算机科学 固定(群体遗传学) 凝视 解码方法 脑电图 人工智能 背景(考古学) 模式识别(心理学) 眼球运动 特征(语言学) 计算机视觉 语音识别 心理学 神经科学 人口 古生物学 语言学 哲学 人口学 社会学 生物 电信
作者
Ruslan Aydarkhanov,Marija Ušćumlić,Ricardo Chavarriaga,Lucian Gheorghe,José del R. Millán
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (2): 026010-026010 被引量:3
标识
DOI:10.1088/1741-2552/abdfb2
摘要

Abstract Objective. In contrast to the classical visual brain–computer interface (BCI) paradigms, which adhere to a rigid trial structure and restricted user behavior, electroencephalogram (EEG)-based visual recognition decoding during our daily activities remains challenging. The objective of this study is to explore the feasibility of decoding the EEG signature of visual recognition in experimental conditions promoting our natural ocular behavior when interacting with our dynamic environment. Approach. In our experiment, subjects visually search for a target object among suddenly appearing objects in the environment while driving a car-simulator. Given that subjects exhibit an unconstrained overt visual behavior, we based our study on eye fixation-related potentials (EFRPs). We report on gaze behavior and single-trial EFRP decoding performance (fixations on visually similar target vs. non-target objects). In addition, we demonstrate the application of our approach in a closed-loop BCI setup. Main results. To identify the target out of four symbol types along a road segment, the BCI system integrated decoding probabilities of multiple EFRP and achieved the average online accuracy of 0.37 ± 0.06 (12 subjects), statistically significantly above the chance level. Using the acquired data, we performed a comparative study of classification algorithms (discriminating target vs. non-target) and feature spaces in a simulated online scenario. The EEG approaches yielded similar moderate performances of at most 0.6 AUC, yet statistically significantly above the chance level. In addition, the gaze duration (dwell time) appears to be an additional informative feature in this context. Significance. These results show that visual recognition of sudden events can be decoded during active driving. Therefore, this study lays a foundation for assistive and recommender systems based on the driver’s brain signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助ZJHYNL采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
lhy完成签到,获得积分10
2秒前
热情嘉懿发布了新的文献求助10
2秒前
小二郎应助Soyuu采纳,获得10
2秒前
ting完成签到,获得积分10
3秒前
3秒前
火星上香菇完成签到,获得积分10
3秒前
4秒前
husky完成签到,获得积分10
4秒前
4秒前
Ava应助Yiran采纳,获得10
5秒前
麦克完成签到,获得积分10
5秒前
smottom应助cj采纳,获得10
5秒前
6秒前
眯眯眼的松鼠完成签到,获得积分10
6秒前
芊芊墨完成签到,获得积分10
6秒前
风趣若烟发布了新的文献求助20
6秒前
6秒前
浅浅发布了新的文献求助10
7秒前
7秒前
husky发布了新的文献求助10
8秒前
CodeCraft应助undertaker采纳,获得10
8秒前
迷人的天抒应助热情嘉懿采纳,获得10
9秒前
香蕉觅云应助热情嘉懿采纳,获得10
9秒前
9秒前
科研通AI6.1应助lnww采纳,获得10
11秒前
七木发布了新的文献求助10
12秒前
瘦瘦紫文发布了新的文献求助10
12秒前
可爱的函函应助李浩采纳,获得10
14秒前
123完成签到,获得积分10
15秒前
可耐的凌旋完成签到 ,获得积分10
15秒前
15秒前
Hello应助飛666采纳,获得10
16秒前
16秒前
一条热带鱼完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207