Closed-loop EEG study on visual recognition during driving

脑-机接口 计算机科学 固定(群体遗传学) 凝视 解码方法 脑电图 人工智能 背景(考古学) 模式识别(心理学) 眼球运动 特征(语言学) 计算机视觉 语音识别 心理学 神经科学 人口 古生物学 语言学 哲学 人口学 社会学 生物 电信
作者
Ruslan Aydarkhanov,Marija Ušćumlić,Ricardo Chavarriaga,Lucian Gheorghe,José del R. Millán
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (2): 026010-026010 被引量:3
标识
DOI:10.1088/1741-2552/abdfb2
摘要

Abstract Objective. In contrast to the classical visual brain–computer interface (BCI) paradigms, which adhere to a rigid trial structure and restricted user behavior, electroencephalogram (EEG)-based visual recognition decoding during our daily activities remains challenging. The objective of this study is to explore the feasibility of decoding the EEG signature of visual recognition in experimental conditions promoting our natural ocular behavior when interacting with our dynamic environment. Approach. In our experiment, subjects visually search for a target object among suddenly appearing objects in the environment while driving a car-simulator. Given that subjects exhibit an unconstrained overt visual behavior, we based our study on eye fixation-related potentials (EFRPs). We report on gaze behavior and single-trial EFRP decoding performance (fixations on visually similar target vs. non-target objects). In addition, we demonstrate the application of our approach in a closed-loop BCI setup. Main results. To identify the target out of four symbol types along a road segment, the BCI system integrated decoding probabilities of multiple EFRP and achieved the average online accuracy of 0.37 ± 0.06 (12 subjects), statistically significantly above the chance level. Using the acquired data, we performed a comparative study of classification algorithms (discriminating target vs. non-target) and feature spaces in a simulated online scenario. The EEG approaches yielded similar moderate performances of at most 0.6 AUC, yet statistically significantly above the chance level. In addition, the gaze duration (dwell time) appears to be an additional informative feature in this context. Significance. These results show that visual recognition of sudden events can be decoded during active driving. Therefore, this study lays a foundation for assistive and recommender systems based on the driver’s brain signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要留学应助粥游天下采纳,获得20
刚刚
w123完成签到,获得积分10
1秒前
气敏侠完成签到,获得积分10
1秒前
久旱逢甘霖完成签到 ,获得积分10
1秒前
彭于晏应助xiaoran采纳,获得10
2秒前
adq完成签到,获得积分10
2秒前
小小K发布了新的文献求助10
2秒前
Ben发布了新的文献求助10
2秒前
Dream_fai完成签到,获得积分10
2秒前
果果发布了新的文献求助10
2秒前
英俊的铭应助淡定采纳,获得30
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
浮游应助细心小鸭子采纳,获得10
3秒前
飞快的从丹完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助Ztx采纳,获得10
4秒前
小林野发布了新的文献求助10
5秒前
怕黑的凌柏完成签到,获得积分10
5秒前
虚影发布了新的文献求助10
5秒前
5秒前
6秒前
CROWN完成签到,获得积分10
6秒前
6秒前
田様应助piers采纳,获得10
6秒前
6秒前
隐形曼青应助我爱科研采纳,获得30
6秒前
bbb完成签到,获得积分10
7秒前
lcjynwe完成签到,获得积分10
7秒前
7秒前
小二郎应助愉快的楷瑞采纳,获得10
8秒前
科研通AI6应助小绵羊采纳,获得10
8秒前
8秒前
8秒前
Ava应助868采纳,获得10
8秒前
一叶舟完成签到 ,获得积分10
9秒前
xiaozhou完成签到,获得积分10
9秒前
9秒前
受伤的依霜完成签到,获得积分20
9秒前
小王同学完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426