Artificial intelligence-enhanced electrocardiography in cardiovascular disease management

医学 疾病 精密医学 深度学习 心脏病学 心房颤动 重症监护医学 人工智能 人口 心源性猝死 内科学 机器学习 病理 计算机科学 环境卫生
作者
Konstantinos C. Siontis,Peter A. Noseworthy,Zachi I. Attia,Paul A. Friedman
出处
期刊:Nature Reviews Cardiology [Springer Nature]
卷期号:18 (7): 465-478 被引量:466
标识
DOI:10.1038/s41569-020-00503-2
摘要

The application of artificial intelligence (AI) to the electrocardiogram (ECG), a ubiquitous and standardized test, is an example of the ongoing transformative effect of AI on cardiovascular medicine. Although the ECG has long offered valuable insights into cardiac and non-cardiac health and disease, its interpretation requires considerable human expertise. Advanced AI methods, such as deep-learning convolutional neural networks, have enabled rapid, human-like interpretation of the ECG, while signals and patterns largely unrecognizable to human interpreters can be detected by multilayer AI networks with precision, making the ECG a powerful, non-invasive biomarker. Large sets of digital ECGs linked to rich clinical data have been used to develop AI models for the detection of left ventricular dysfunction, silent (previously undocumented and asymptomatic) atrial fibrillation and hypertrophic cardiomyopathy, as well as the determination of a person’s age, sex and race, among other phenotypes. The clinical and population-level implications of AI-based ECG phenotyping continue to emerge, particularly with the rapid rise in the availability of mobile and wearable ECG technologies. In this Review, we summarize the current and future state of the AI-enhanced ECG in the detection of cardiovascular disease in at-risk populations, discuss its implications for clinical decision-making in patients with cardiovascular disease and critically appraise potential limitations and unknowns. In this Review, Friedman and colleagues summarize the use of artificial intelligence-enhanced electrocardiography in the detection of cardiovascular disease in at-risk populations, discuss its implications for clinical decision-making in patients with cardiovascular disease and critically appraise potential limitations and unknowns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
蒋蒋发布了新的文献求助10
2秒前
fff发布了新的文献求助10
3秒前
研友_Zlqx38发布了新的文献求助10
3秒前
zyh应助jeep先生采纳,获得10
3秒前
4秒前
4秒前
小周发布了新的文献求助10
4秒前
遇水发布了新的文献求助10
5秒前
Menkaz完成签到,获得积分10
6秒前
兴奋采梦完成签到,获得积分10
6秒前
hanlinhong发布了新的文献求助10
6秒前
yidemeihaoshijie完成签到 ,获得积分10
6秒前
8秒前
你好发布了新的文献求助10
9秒前
小将发布了新的文献求助10
9秒前
海陵吹风鸡完成签到,获得积分10
9秒前
自由傲珊完成签到,获得积分10
10秒前
今后应助wrufhg采纳,获得10
10秒前
hai完成签到,获得积分10
10秒前
英俊的铭应助hanlinhong采纳,获得10
11秒前
遇水完成签到,获得积分20
13秒前
开朗毒娘发布了新的文献求助10
13秒前
14秒前
隐形曼青应助fff采纳,获得10
14秒前
15秒前
充电宝应助高高诗柳采纳,获得10
17秒前
英勇的小白菜完成签到,获得积分10
17秒前
18秒前
18秒前
初见发布了新的文献求助10
20秒前
20秒前
LM发布了新的文献求助10
21秒前
21秒前
领导范儿应助柚柚子采纳,获得10
21秒前
小小米发布了新的文献求助10
23秒前
刘浩然发布了新的文献求助30
23秒前
24秒前
hai发布了新的文献求助20
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145363
求助须知:如何正确求助?哪些是违规求助? 2796792
关于积分的说明 7821445
捐赠科研通 2453077
什么是DOI,文献DOI怎么找? 1305438
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464