作者
Bin Teng,Chen Huang,Chuanli Cheng,Anjaneyulu Udduttula,Xiang-Fang Yu,Chang Liu,Jian Li,Zhenyu Yao,Jing Long,Li-fu Miao,Chao Zou,Jun Chu,Jian V. Zhang,Pei‐Gen Ren
摘要
•Metabolitin is a newly identified peptide hormone that significantly improves fatty liver. •The major mechanism by which metabolitin improves NAFLD is by inhibiting fat absorption in the intestines. •Metabolitin acts by binding and interacting with its receptor GPRC6A. Background & Aims Circulating peptides and G protein-coupled receptors (GPCRs) have gained much attention because of their biofunctions in metabolic disorders including obesity and non-alcoholic fatty liver disease (NAFLD). Herein, we aimed to characterize the role and therapeutic potential of a newly identified peptide hormone in NAFLD. Methods Using bioinformatics, we identified a murine circulating pentadecapeptide flanked by potential convertase cleavage sites of osteocalcin (OCN), which we named 'metabolitin (MTL)'. We used ligand-receptor binding, receptor internalization, bioluminescence resonance energy transfer and Nano isothermal titration calorimetry assays to study the binding relationship between MTL and GPRC6A. For in vivo biological studies, wild-type mice kept on a high-fat diet (HFD) were injected or gavaged with MTL to study its function in NAFLD. Results We confirmed that MTL binds to GPRC6A and OCN interacts with GPRC6A using in vitro biological studies. Both intraperitoneal and oral administration of MTL greatly improved NAFLD and insulin resistance in a mouse model. Interacting with GPRC6A expressed in intestines, MTL can significantly inhibit intestinal neurotensin secretion, which in turn inhibits triglyceride but not cholesterol gut absorption, mediated by the 5′AMP-activated protein kinase pathway. In addition, glucagon like peptide–1 secretion was induced by MTL treatment. Conclusions Oral or intraperitoneal MTL significantly improves the symptoms of NAFLD by inhibiting lipid absorption and insulin resistance. MTL could be a potential therapeutic candidate for the treatment of NAFLD. Lay summary A novel murine peptide hormone, herein named 'metabolitin', inhibits fatty acid absorption and improves systemic insulin resistance in a murine model of obesity and non-alcoholic fatty liver disease. Thus, metabolitin has therapeutic potential for the treatment of patients with non-alcoholic fatty liver disease. Circulating peptides and G protein-coupled receptors (GPCRs) have gained much attention because of their biofunctions in metabolic disorders including obesity and non-alcoholic fatty liver disease (NAFLD). Herein, we aimed to characterize the role and therapeutic potential of a newly identified peptide hormone in NAFLD. Using bioinformatics, we identified a murine circulating pentadecapeptide flanked by potential convertase cleavage sites of osteocalcin (OCN), which we named 'metabolitin (MTL)'. We used ligand-receptor binding, receptor internalization, bioluminescence resonance energy transfer and Nano isothermal titration calorimetry assays to study the binding relationship between MTL and GPRC6A. For in vivo biological studies, wild-type mice kept on a high-fat diet (HFD) were injected or gavaged with MTL to study its function in NAFLD. We confirmed that MTL binds to GPRC6A and OCN interacts with GPRC6A using in vitro biological studies. Both intraperitoneal and oral administration of MTL greatly improved NAFLD and insulin resistance in a mouse model. Interacting with GPRC6A expressed in intestines, MTL can significantly inhibit intestinal neurotensin secretion, which in turn inhibits triglyceride but not cholesterol gut absorption, mediated by the 5′AMP-activated protein kinase pathway. In addition, glucagon like peptide–1 secretion was induced by MTL treatment. Oral or intraperitoneal MTL significantly improves the symptoms of NAFLD by inhibiting lipid absorption and insulin resistance. MTL could be a potential therapeutic candidate for the treatment of NAFLD.