Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data

计算生物学 生物 RNA序列 生物信息学 水准点(测量) 计算机科学 单细胞分析 转录组 数据挖掘 基因 遗传学 细胞 基因表达 大地测量学 地理
作者
Christian H. Holland,Jovan Tanevski,Javier Perales-Patón,Jan Gleixner,Manu P. Kumar,Elisabetta Mereu,Brian A. Joughin,Oliver Stegle,Douglas A. Lauffenburger,Holger Heyn,Bence Szalai,Julio Sáez-Rodríguez
出处
期刊:Genome Biology [BioMed Central]
卷期号:21 (1) 被引量:251
标识
DOI:10.1186/s13059-020-1949-z
摘要

Abstract Background Many functional analysis tools have been developed to extract functional and mechanistic insight from bulk transcriptome data. With the advent of single-cell RNA sequencing (scRNA-seq), it is in principle possible to do such an analysis for single cells. However, scRNA-seq data has characteristics such as drop-out events and low library sizes. It is thus not clear if functional TF and pathway analysis tools established for bulk sequencing can be applied to scRNA-seq in a meaningful way. Results To address this question, we perform benchmark studies on simulated and real scRNA-seq data. We include the bulk-RNA tools PROGENy, GO enrichment, and DoRothEA that estimate pathway and transcription factor (TF) activities, respectively, and compare them against the tools SCENIC/AUCell and metaVIPER, designed for scRNA-seq. For the in silico study, we simulate single cells from TF/pathway perturbation bulk RNA-seq experiments. We complement the simulated data with real scRNA-seq data upon CRISPR-mediated knock-out. Our benchmarks on simulated and real data reveal comparable performance to the original bulk data. Additionally, we show that the TF and pathway activities preserve cell type-specific variability by analyzing a mixture sample sequenced with 13 scRNA-seq protocols. We also provide the benchmark data for further use by the community. Conclusions Our analyses suggest that bulk-based functional analysis tools that use manually curated footprint gene sets can be applied to scRNA-seq data, partially outperforming dedicated single-cell tools. Furthermore, we find that the performance of functional analysis tools is more sensitive to the gene sets than to the statistic used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honglingjing完成签到,获得积分10
刚刚
愿爱无忧完成签到,获得积分10
1秒前
1秒前
灯光阑珊发布了新的文献求助10
2秒前
蔡从安发布了新的文献求助10
2秒前
2秒前
3秒前
sdniuidifod发布了新的文献求助10
3秒前
田yg完成签到,获得积分10
3秒前
mmmc大好发布了新的文献求助10
3秒前
愿爱无忧发布了新的文献求助10
3秒前
和谐白云完成签到,获得积分10
4秒前
周佩柔完成签到,获得积分10
4秒前
heyaoe完成签到 ,获得积分20
4秒前
花生辣鱼完成签到,获得积分10
4秒前
4秒前
zyh应助谨慎的雨梅采纳,获得10
5秒前
菠萝炒饭应助zsq采纳,获得10
5秒前
5秒前
淡然寒松完成签到,获得积分20
6秒前
6秒前
碳土不凡完成签到 ,获得积分10
7秒前
852应助xiaofenzi采纳,获得10
7秒前
wanci应助无私烤鸡采纳,获得10
7秒前
8秒前
呼呼完成签到,获得积分10
8秒前
accept完成签到,获得积分20
8秒前
背后海亦发布了新的文献求助10
9秒前
heyaoe发布了新的文献求助10
9秒前
不周山发布了新的文献求助10
10秒前
10秒前
lyl完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
13秒前
z1z1z发布了新的文献求助10
13秒前
13秒前
十亿少女的梦应助笑南采纳,获得10
14秒前
kk发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642