已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions

乳房磁振造影 接收机工作特性 无线电技术 有效扩散系数 医学 放射科 秩相关 磁共振成像 动态增强MRI 磁共振弥散成像 乳房成像 峰度 特征选择 核医学 人工智能 乳腺癌 乳腺摄影术 计算机科学 机器学习 数学 癌症 统计 内科学
作者
Qian Zhang,Yunsong Peng,Wei Liu,Jiayuan Bai,Jian Zheng,Xiaodong Yang,Lijuan Zhou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (2): 596-607 被引量:73
标识
DOI:10.1002/jmri.27098
摘要

Background MRI‐based radiomics has been used to diagnose breast lesions; however, little research combining quantitative pharmacokinetic parameters of dynamic contrast‐enhanced MRI (DCE‐MRI) and diffusion kurtosis imaging (DKI) exists. Purpose To develop and validate a multimodal MRI‐based radiomics model for the differential diagnosis of benign and malignant breast lesions and analyze the discriminative abilities of different MR sequences. Study Type Retrospective. Population In all, 207 female patients with 207 histopathology‐confirmed breast lesions (95 benign and 112 malignant) were included in the study. Then 159 patients were assigned to the training group, and 48 patients comprised the validation group. Field Strength/Sequence T 2 ‐weighted (T 2 W), T 1 ‐weighted (T 1 W), diffusion‐weighted MR imaging (b‐values = 0, 500, 800, and 2000 seconds/mm 2 ) and quantitative DCE‐MRI were performed on a 3.0T MR scanner. Assessment Radiomics features were extracted from T 2 WI, T 1 WI, DKI, apparent diffusion coefficient (ADC) maps, and DCE pharmacokinetic parameter maps in the training set. Models based on each sequence or combinations of sequences were built using a support vector machine (SVM) classifier and used to differentiate benign and malignant breast lesions in the validation set. Statistical Tests Optimal feature selection was performed by Spearman's rank correlation coefficients and the least absolute shrinkage and selection operator algorithm (LASSO). Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of the radiomics models in the validation set. Results The area under the ROC curve (AUC) of the optimal radiomics model, including T 2 WI, DKI, and quantitative DCE‐MRI parameter maps was 0.921, with an accuracy of 0.833. The AUCs of the models based on T 1 WI, T 2 WI, ADC map, DKI, and DCE pharmacokinetic parameter maps were 0.730, 0.791, 0.770, 0.788, and 0.836, respectively. Data Conclusion The model based on radiomics features from T 2 WI, DKI, and quantitative DCE pharmacokinetic parameter maps has a high discriminatory ability for benign and malignant breast lesions. Level of Evidence 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2020;52:596–607.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助weilanhaian采纳,获得10
1秒前
打打应助四七采纳,获得10
2秒前
带头大哥完成签到,获得积分0
3秒前
快乐友易发布了新的文献求助10
4秒前
4秒前
gc发布了新的文献求助10
6秒前
可爱的函函应助刘笨笨采纳,获得10
8秒前
依依不舍完成签到,获得积分10
8秒前
深情安青应助xip采纳,获得10
10秒前
zcc111完成签到,获得积分10
11秒前
Hello应助快乐友易采纳,获得20
14秒前
15秒前
16秒前
18秒前
zfh1341完成签到,获得积分10
19秒前
一手灵魂发布了新的文献求助10
20秒前
微笑的井完成签到 ,获得积分10
20秒前
研友_n2Bkrn完成签到,获得积分10
20秒前
21秒前
杨呼呼发布了新的文献求助10
21秒前
zfh1341发布了新的文献求助10
22秒前
笛卡尔发布了新的文献求助10
22秒前
26秒前
okya发布了新的文献求助10
27秒前
小浣熊完成签到 ,获得积分10
27秒前
30秒前
chunyan_sysu发布了新的文献求助10
30秒前
Moonlight发布了新的文献求助20
31秒前
热情的野狼完成签到,获得积分10
31秒前
32秒前
爆米花应助霸气的瑛采纳,获得10
32秒前
科目三应助不安的嘉熙采纳,获得10
33秒前
陈嘟嘟发布了新的文献求助10
33秒前
CodeCraft应助赵雪采纳,获得10
33秒前
yukpangwoo完成签到,获得积分10
35秒前
35秒前
Cheng完成签到,获得积分10
36秒前
36秒前
37秒前
852发布了新的文献求助20
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749