Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning

机器学习 糖尿病 人工智能 糖尿病性视网膜病变 随机森林 支持向量机
作者
Baoyi Liu,Bin Zhang,Yijun Hu,Dan Cao,Dawei Yang,Qiaowei Wu,Yu Hu,Jingwen Yang,Qingsheng Peng,Manqing Huang,Pingting Zhong,Xinran Dong,Songfu Feng,Tao Li,Haotian Lin,Hongmin Cai,Xiaohong Yang,Honghua Yu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (1): 43-43 被引量:4
标识
DOI:10.21037/atm-20-1431
摘要

Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定迎天完成签到,获得积分10
刚刚
Zzzoey发布了新的文献求助10
1秒前
搜集达人应助小罗飞飞飞采纳,获得10
1秒前
詹卫卫完成签到 ,获得积分10
1秒前
1秒前
宇_发布了新的文献求助20
1秒前
2秒前
esdeath发布了新的文献求助10
2秒前
云轩完成签到,获得积分10
2秒前
2秒前
2秒前
自然乐松发布了新的文献求助10
2秒前
yesir完成签到,获得积分10
3秒前
普雅花的等待完成签到,获得积分10
3秒前
想人陪的以云完成签到,获得积分10
4秒前
科研通AI5应助德德采纳,获得10
4秒前
NexusExplorer应助李来仪采纳,获得10
4秒前
威康宇宙发布了新的文献求助10
4秒前
小蘑菇应助润润轩轩采纳,获得10
4秒前
5秒前
5秒前
个性尔槐发布了新的文献求助10
5秒前
xiangxl完成签到,获得积分10
5秒前
fang完成签到 ,获得积分10
6秒前
汉堡包应助zhui采纳,获得10
6秒前
6秒前
万万完成签到,获得积分10
6秒前
sci完成签到,获得积分10
7秒前
7秒前
科研通AI5应助马静雨采纳,获得50
7秒前
Lucas应助酷炫板凳采纳,获得10
7秒前
7秒前
FFFFFFG完成签到,获得积分10
8秒前
完美世界应助0000采纳,获得30
9秒前
rosexu发布了新的文献求助10
9秒前
爆米花应助sv采纳,获得10
9秒前
9秒前
搞怪网络完成签到,获得积分10
11秒前
11秒前
liudiqiu应助lh采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794