Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning

机器学习 糖尿病 人工智能 糖尿病性视网膜病变 随机森林 支持向量机
作者
Baoyi Liu,Bin Zhang,Yijun Hu,Dan Cao,Dawei Yang,Qiaowei Wu,Yu Hu,Jingwen Yang,Qingsheng Peng,Manqing Huang,Pingting Zhong,Xinran Dong,Songfu Feng,Tao Li,Haotian Lin,Hongmin Cai,Xiaohong Yang,Honghua Yu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (1): 43-43 被引量:4
标识
DOI:10.21037/atm-20-1431
摘要

Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快帮我找找完成签到,获得积分10
刚刚
xiezhuochun完成签到 ,获得积分10
1秒前
4秒前
aixiaoming0503完成签到,获得积分10
5秒前
forge完成签到,获得积分10
5秒前
6秒前
Distance完成签到,获得积分10
9秒前
蒋念寒发布了新的文献求助10
10秒前
雪雨夜心完成签到,获得积分10
14秒前
又是一年完成签到,获得积分10
15秒前
Distance发布了新的文献求助10
16秒前
李子完成签到 ,获得积分10
17秒前
17秒前
耍酷的指甲油完成签到,获得积分20
18秒前
安小磊完成签到 ,获得积分10
19秒前
雄i完成签到,获得积分10
22秒前
明亮的遥完成签到 ,获得积分0
24秒前
安澜完成签到,获得积分10
24秒前
MG_XSJ应助1111采纳,获得10
27秒前
尊敬太阳完成签到,获得积分20
28秒前
29秒前
量子星尘发布了新的文献求助30
30秒前
健壮安柏完成签到 ,获得积分10
31秒前
Jasper应助忧郁紫翠采纳,获得10
32秒前
32秒前
33秒前
33秒前
rayqiang完成签到,获得积分10
33秒前
33秒前
33秒前
蛋堡完成签到 ,获得积分10
34秒前
35秒前
111完成签到 ,获得积分10
35秒前
zgt01发布了新的文献求助10
35秒前
songvv发布了新的文献求助10
36秒前
温文尔雅完成签到,获得积分10
36秒前
1111完成签到,获得积分10
38秒前
雪花发布了新的文献求助10
39秒前
41秒前
zgt01完成签到,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022