Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning

机器学习 糖尿病 人工智能 糖尿病性视网膜病变 随机森林 支持向量机
作者
Baoyi Liu,Bin Zhang,Yijun Hu,Dan Cao,Dawei Yang,Qiaowei Wu,Yu Hu,Jingwen Yang,Qingsheng Peng,Manqing Huang,Pingting Zhong,Xinran Dong,Songfu Feng,Tao Li,Haotian Lin,Hongmin Cai,Xiaohong Yang,Honghua Yu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (1): 43-43 被引量:4
标识
DOI:10.21037/atm-20-1431
摘要

Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的大美完成签到,获得积分10
刚刚
我是老大应助月牙超级甜采纳,获得10
4秒前
4秒前
淡定的翠霜关注了科研通微信公众号
4秒前
舒心的青槐完成签到 ,获得积分10
5秒前
火星上以亦完成签到,获得积分10
6秒前
7秒前
背后的问寒完成签到,获得积分10
8秒前
Soul完成签到 ,获得积分20
8秒前
Akim应助小二郎采纳,获得10
11秒前
13秒前
14秒前
科研通AI2S应助littleblack采纳,获得10
15秒前
15秒前
17秒前
简单水杯完成签到 ,获得积分10
17秒前
lllyu完成签到,获得积分10
19秒前
20秒前
111完成签到,获得积分10
20秒前
漂亮糖豆发布了新的文献求助10
20秒前
星辰完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
Orange应助tsttst采纳,获得10
24秒前
飞飞完成签到,获得积分10
24秒前
樊书南发布了新的文献求助10
25秒前
XXX完成签到,获得积分10
25秒前
25秒前
爱听歌的青筠完成签到,获得积分10
26秒前
小熊猫发布了新的文献求助10
27秒前
Singularity应助光芒万丈采纳,获得20
27秒前
luobo发布了新的文献求助10
28秒前
FUNG发布了新的文献求助10
28秒前
小二郎发布了新的文献求助10
29秒前
31秒前
32秒前
luobo完成签到,获得积分10
32秒前
科研通AI2S应助hhdh采纳,获得10
35秒前
36秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084836
求助须知:如何正确求助?哪些是违规求助? 2737894
关于积分的说明 7547256
捐赠科研通 2387494
什么是DOI,文献DOI怎么找? 1265999
科研通“疑难数据库(出版商)”最低求助积分说明 613212
版权声明 598429