清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning

机器学习 糖尿病 人工智能 糖尿病性视网膜病变 随机森林 支持向量机
作者
Baoyi Liu,Bin Zhang,Yijun Hu,Dan Cao,Dawei Yang,Qiaowei Wu,Yu Hu,Jingwen Yang,Qingsheng Peng,Manqing Huang,Pingting Zhong,Xinran Dong,Songfu Feng,Tao Li,Haotian Lin,Hongmin Cai,Xiaohong Yang,Honghua Yu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (1): 43-43 被引量:4
标识
DOI:10.21037/atm-20-1431
摘要

Background This study aimed to predict the treatment outcomes in patients with diabetic macular edema (DME) after 3 monthly anti-vascular endothelial growth factor (VEGF) injections using machine learning (ML) based on pretreatment optical coherence tomography (OCT) images and clinical variables. Methods An ensemble ML system consisting of four deep learning (DL) models and five classical machine learning (CML) models was developed to predict the posttreatment central foveal thickness (CFT) and the best-corrected visual acuity (BCVA). A total of 363 OCT images and 7,587 clinical data records from 363 eyes were included in the training set (304 eyes) and external validation set (59 eyes). The DL models were trained using the OCT images, and the CML models were trained using the OCT images features and clinical variables. The predictive posttreatment CFT and BCVA values were compared with true outcomes obtained from the medical records. Results For CFT prediction, the mean absolute error (MAE), root mean square error (RMSE), and R2 of the best-performing model in the training set was 66.59, 93.73, and 0.71, respectively, with an area under receiver operating characteristic curve (AUC) of 0.90 for distinguishing the eyes with good anatomical response. The MAE, RMSE, and R2 was 68.08, 97.63, and 0.74, respectively, with an AUC of 0.94 in the external validation set. For BCVA prediction, the MAE, RMSE, and R2 of the best-performing model in the training set was 0.19, 0.29, and 0.60, respectively, with an AUC of 0.80 for distinguishing eyes with a good functional response. The external validation achieved a MAE, RMSE, and R2 of 0.13, 0.20, and 0.68, respectively, with an AUC of 0.81. Conclusions Our ensemble ML system accurately predicted posttreatment CFT and BCVA after anti-VEGF injections in DME patients, and can be used to prospectively assess the efficacy of anti-VEGF therapy in DME patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh0发布了新的文献求助150
12秒前
16秒前
16秒前
研友_Z7XY28完成签到,获得积分10
17秒前
hh0发布了新的文献求助150
19秒前
研友_Z7XY28发布了新的文献求助10
22秒前
33秒前
34秒前
hh0发布了新的文献求助10
35秒前
49秒前
hh0发布了新的文献求助10
51秒前
53秒前
白子双完成签到,获得积分10
59秒前
Ashley完成签到 ,获得积分10
1分钟前
轩辕中蓝完成签到 ,获得积分10
1分钟前
hh0发布了新的文献求助150
1分钟前
hh0发布了新的文献求助150
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
1分钟前
vassallo完成签到 ,获得积分10
1分钟前
司纤户羽完成签到 ,获得积分10
1分钟前
1分钟前
hh0发布了新的文献求助10
1分钟前
执着夏山完成签到,获得积分10
1分钟前
祸月完成签到 ,获得积分10
1分钟前
秋夜临完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hh0发布了新的文献求助10
2分钟前
hh0发布了新的文献求助150
2分钟前
王医生1650完成签到,获得积分10
2分钟前
hh0发布了新的文献求助150
2分钟前
666完成签到 ,获得积分10
2分钟前
科研通AI2S应助哀莫丶哀生采纳,获得10
3分钟前
搜集达人应助hh0采纳,获得150
3分钟前
HaoHao04完成签到 ,获得积分10
3分钟前
充电宝应助hh0采纳,获得100
3分钟前
情怀应助hh0采纳,获得10
3分钟前
花朝唯完成签到 ,获得积分10
4分钟前
摆烂完成签到 ,获得积分10
4分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884303
关于积分的说明 8232922
捐赠科研通 2552344
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769