Scalable solvent-free mechanofusion and magnesiothermic reduction processes for obtaining carbon nanospheres-encapsulated crystalline silicon anode for Li-ion batteries

法拉第效率 阳极 材料科学 化学工程 纳米技术 碳纤维 电解质 X射线光电子能谱 纳米颗粒 纳米结构 电极 化学 光电子学 复合材料 复合数 工程类 物理化学
作者
Juthaporn Wutthiprom,Nutthaphon Phattharasupakun,Chanikarn Tomon,Montree Sawangphruk
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:352: 136457-136457 被引量:18
标识
DOI:10.1016/j.electacta.2020.136457
摘要

It is unquestionable that Si nanostructures i.e., nanosheets, nanowires, nanoparticles become more and more importance in high-energy lithium ion batteries (>300 Wh kg−1). However, the current commercial Si nanostructures are rather expensive, which is not yet able to complete with the graphite anode in term of USD/Wh kg−1. Herein, the conventional food grade non-porous silicon dioxide (SiO2) which costs 270-times lower than Si micron-sized and 3000-times lower than Si nano-sized (10 nm) is selected as a precursor for synthesizing pure crystalline Si nanoparticles. A novel scalable solvent-free mechanofusion method was firstly introduced to synthesize carbon nanospheres-encapsulated SiO2 (SiO2@C) followed by the reduction process producing silicon-carbon nanoparticles core-shell materials ([email protected]) with interparticle void space. The carbon shell can prevent the volume expansion (>400%) of inner Si particles, which is a critical drawback of Si anode. In addition, the pre-lithiated [email protected] anode obtained by a direct contact with Li counter electrode can address the poor coulombic efficiency at the first cycle. The pre-lithiated [email protected] anode can deliver a reversible discharge specific capacity of 1390 mAh g−1 with a remarkable capacity retention of 90.4% and coulombic efficiency of ∼100% after 1000 cycles at a high rate of 1C. The ex situ TEM and XPS investigated confirm that the inner Si is well-confined within carbon buffer shell without being directly exposed to the electrolyte. Besides, an in operando XRD shows the reversible phase transformation during cycling for which Li15Si4 alloy is the product indicating that [email protected] prepared in this work may be an ideal practical anode of high-energy Li-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助lucky采纳,获得10
刚刚
Zhang发布了新的文献求助10
1秒前
HuanChen完成签到,获得积分10
1秒前
爆米花应助chx8830316采纳,获得10
1秒前
花海完成签到,获得积分10
1秒前
少吃一口完成签到,获得积分10
2秒前
英俊的铭应助研友_nEoEy8采纳,获得10
2秒前
ybmdyr发布了新的文献求助10
3秒前
4秒前
小蘑菇应助亢kxh采纳,获得10
4秒前
材1发布了新的文献求助30
4秒前
4秒前
Able阿拉基完成签到,获得积分10
5秒前
平常无颜发布了新的文献求助10
5秒前
天真的土豆关注了科研通微信公众号
5秒前
鱼香肉丝完成签到,获得积分10
6秒前
saxg_hu完成签到,获得积分10
6秒前
张津浩完成签到,获得积分10
6秒前
Nancy发布了新的文献求助30
6秒前
qhdsyxy完成签到 ,获得积分0
8秒前
imkhun1021完成签到,获得积分10
8秒前
RNNNLL发布了新的文献求助10
8秒前
zdl完成签到,获得积分10
8秒前
科研王完成签到 ,获得积分10
9秒前
William完成签到,获得积分10
9秒前
梵高完成签到,获得积分10
9秒前
10秒前
科研CY完成签到 ,获得积分10
10秒前
任婷完成签到,获得积分10
11秒前
俊逸依丝发布了新的文献求助10
11秒前
11秒前
哇哈哈完成签到,获得积分20
11秒前
稀松完成签到,获得积分0
11秒前
幸福龙猫发布了新的文献求助10
11秒前
12秒前
苹果听枫完成签到,获得积分10
12秒前
Ww完成签到,获得积分10
12秒前
12秒前
12秒前
Agernon完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550536
求助须知:如何正确求助?哪些是违规求助? 3126839
关于积分的说明 9370757
捐赠科研通 2825985
什么是DOI,文献DOI怎么找? 1553508
邀请新用户注册赠送积分活动 724889
科研通“疑难数据库(出版商)”最低求助积分说明 714494