Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy

材料科学 残余应力 表面完整性 机械加工 有限元法 抛光 GSM演进的增强数据速率 复合材料 压力(语言学) 机械工程 结构工程 冶金 计算机科学 工程类 电信 语言学 哲学
作者
Y. Rahul,K. Vipindas,Jose Mathew
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:62: 600-612 被引量:45
标识
DOI:10.1016/j.jmapro.2020.12.031
摘要

To meet the growing demands of sophisticated component service life and miniaturization, the study of surface integrity such as residual stress after the machining becomes more essential. Compressive residual stress improves wear resistance of topological pairs and inhibits the fatigue crack propagation. To obtain a better understanding of state of residual stress at surface and sub-surface level, continuum-mechanics based Finite Element (FE) modeling is established. Dynamic explicit time incrementation scheme with coupled temperature displacement transient analysis is performed. Critical uncut chip thickness and consequences of tool edge radius, feed per tooth, and axial depth on cutting forces are investigated through FEM modeling. Besides the FEM modeling, the theoretical elastoplastic orthogonal cutting model with coupling of thermal and mechanical field variables is also demonstrated. In present research, Ti-6Al-4 V was chosen as the workpiece material because of its wide range of applications in biomedical, electronics, optics and aerospace industry due to their superior mechanical, chemical and high-temperature properties. X-ray diffraction (XRD) technique was used to measure the residual stress developed during micro-end milling process. Simulated results were validated with the experimental observations. To assess the residual stress at sub-surface level, electro polishing is done to remove the surface layer. It was found that both experimental and simulated results follow a similar trend and gave a good agreement between them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智宛秋完成签到,获得积分10
刚刚
daggeraxe完成签到 ,获得积分10
1秒前
1秒前
喜文发布了新的文献求助10
1秒前
2秒前
2秒前
DR完成签到,获得积分10
3秒前
Juvenilesy完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
魔幻的向松完成签到,获得积分10
4秒前
繁星完成签到 ,获得积分10
5秒前
zy发布了新的文献求助10
5秒前
凤凰应助赵一采纳,获得50
5秒前
浮游应助struggle采纳,获得10
5秒前
5秒前
啊莲发布了新的文献求助10
6秒前
烟柳画桥完成签到,获得积分10
6秒前
研友_ZzReaZ发布了新的文献求助10
6秒前
英姑应助DueDue0327采纳,获得10
6秒前
研友_8RlQ2n完成签到,获得积分10
6秒前
田様应助SHEN采纳,获得10
7秒前
7秒前
wuhu完成签到,获得积分10
7秒前
YunjiangZhang发布了新的文献求助100
7秒前
汽水发布了新的文献求助10
7秒前
Zx_1993应助苏打采纳,获得10
8秒前
顾子墨完成签到,获得积分10
8秒前
迷途灯光完成签到,获得积分10
9秒前
超级丸子发布了新的文献求助10
9秒前
9秒前
Yolo发布了新的文献求助10
9秒前
linn完成签到,获得积分10
10秒前
ss发布了新的文献求助10
10秒前
小月月yyy完成签到,获得积分10
10秒前
11秒前
陈新完成签到,获得积分10
11秒前
12秒前
Jasper应助自觉的小蝴蝶采纳,获得10
12秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010