裂褶菌公社
铀
生物吸附
化学
环境化学
铀酰
生物量(生态学)
放射化学
吸附
核化学
生物化学
生物
有机化学
生态学
材料科学
冶金
吸附
作者
Anne Wollenberg,Jérôme Kretzschmar,Björn Drobot,René Hübner,Leander Freitag,Falk Lehmann,Alix Günther,Thorsten Stumpf,Johannes Raff
标识
DOI:10.1016/j.jhazmat.2021.125068
摘要
After the Chernobyl and Fukushima incidents it has become clear that fungi can take up and accumulate large quantities of radionuclides and heavy metals, but the underlying processes are not well understood yet. For this study, the molecular interactions of uranium(VI) with the white-rot fungi, Schizophyllum commune and Pleurotus ostreatus, and the soil-living fungus, Leucoagaricus naucinus, were investigated. First, the uranium concentration in the biomass was determined by time-dependent bioassociation experiments. To characterize the molecular interactions, uranium was localized in the biomass by transmission electron microscopy analysis. Second, the formed uranyl complexes in both biomass and supernatant were determined by fluorescence spectroscopy. Additionally, possible bioligands in the supernatant were identified. The results show that the discernible interactions between metals and fungi are similar, namely biosorption, accumulation, and subsequent crystallization. But at the same time, the underlying biochemical mechanisms are different and specific to the fungal species. In addition, Schizophyllum commune was found to be the only fungus that, under the chosen experimental conditions, released tryptophan and other indole derivatives in the presence of uranium(VI) as determined by nuclear magnetic resonance spectroscopy. These released substances most likely act as messenger molecules rather than serving the direct detoxification of uranium(VI).
科研通智能强力驱动
Strongly Powered by AbleSci AI