Machine learning-based prediction of response to growth hormone treatment in Turner syndrome: the LG Growth Study

医学 生长激素治疗 特纳综合征 内科学 生长激素 线性回归 回归 回归分析 激素 统计 数学
作者
Mo Kyung Jung,Jeesuk Yu,Ji Eun Lee,Se Young Kim,Hae Soon Kim,Eun-Gyong Yoo
出处
期刊:Journal of Pediatric Endocrinology and Metabolism [De Gruyter]
卷期号:33 (1): 71-78 被引量:9
标识
DOI:10.1515/jpem-2019-0311
摘要

Abstract Background Growth hormone (GH) treatment has become a common practice in Turner syndrome (TS). However, there are only a few studies on the response to GH treatment in TS. The aim of this study is to predict the responsiveness to GH treatment and to suggest a prediction model of height outcome in TS. Methods The clinical parameters of 105 TS patients registered in the LG Growth Study (LGS) were retrospectively reviewed. The prognostic factors for the good responders were identified, and the prediction of height response was investigated by the random forest (RF) method, and also, multiple regression models were applied. Results In the RF method, the most important predictive variable for the increment of height standard deviation score (SDS) during the first year of GH treatment was chronologic age (CA) at start of GH treatment. The RF method also showed that the increment of height SDS during the first year was the most important predictor in the increment of height SDS after 3 years of treatment. In a prediction model by multiple regression, younger CA was the significant predictor of height SDS gain during the first year (32.4% of the variability). After 3 years of treatment, mid-parental height (MPH) and the increment of height SDS during the first year were identified as significant predictors (76.6% of the variability). Conclusions Both the machine learning approach and the multiple regression model revealed that younger CA at the start of GH treatment was the most important factor related to height response in patients with TS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫沫沫829发布了新的文献求助10
刚刚
深情安青应助三四采纳,获得10
刚刚
CodeCraft应助出去来采纳,获得10
刚刚
3秒前
苹果念双发布了新的文献求助10
3秒前
狂野世立发布了新的文献求助10
4秒前
丘比特应助ngg采纳,获得10
4秒前
nancyjcfan完成签到,获得积分10
6秒前
7秒前
Catalysis123发布了新的文献求助10
7秒前
LGJ完成签到,获得积分10
8秒前
乐乐应助麻团儿采纳,获得10
9秒前
传奇3应助何大帅哥采纳,获得10
9秒前
呆呆完成签到,获得积分10
9秒前
修辞完成签到 ,获得积分10
9秒前
CipherSage应助滕擎采纳,获得10
10秒前
12秒前
14秒前
zwlplant完成签到,获得积分10
14秒前
JamesPei应助瘦瘦白薇采纳,获得10
15秒前
16秒前
16秒前
Owen应助曹小曹采纳,获得10
16秒前
17秒前
杨乃彬完成签到,获得积分10
17秒前
菜菜子发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
辣个男子发布了新的文献求助10
19秒前
香蕉觅云应助柠檬精翠翠采纳,获得10
21秒前
麻团儿发布了新的文献求助10
21秒前
slycmd完成签到,获得积分10
21秒前
22秒前
22秒前
ngg发布了新的文献求助10
22秒前
甜甜的元瑶完成签到,获得积分10
22秒前
出去来发布了新的文献求助10
22秒前
23秒前
jingsihan发布了新的文献求助30
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490396
求助须知:如何正确求助?哪些是违规求助? 3077358
关于积分的说明 9148590
捐赠科研通 2769569
什么是DOI,文献DOI怎么找? 1519799
邀请新用户注册赠送积分活动 704314
科研通“疑难数据库(出版商)”最低求助积分说明 702113