Machine learning-based prediction of response to growth hormone treatment in Turner syndrome: the LG Growth Study

医学 生长激素治疗 特纳综合征 内科学 生长激素 线性回归 回归 回归分析 激素 统计 数学
作者
Mo Kyung Jung,Jeesuk Yu,Ji Eun Lee,Se Young Kim,Hae Soon Kim,Eun-Gyong Yoo
出处
期刊:Journal of Pediatric Endocrinology and Metabolism [De Gruyter]
卷期号:33 (1): 71-78 被引量:9
标识
DOI:10.1515/jpem-2019-0311
摘要

Abstract Background Growth hormone (GH) treatment has become a common practice in Turner syndrome (TS). However, there are only a few studies on the response to GH treatment in TS. The aim of this study is to predict the responsiveness to GH treatment and to suggest a prediction model of height outcome in TS. Methods The clinical parameters of 105 TS patients registered in the LG Growth Study (LGS) were retrospectively reviewed. The prognostic factors for the good responders were identified, and the prediction of height response was investigated by the random forest (RF) method, and also, multiple regression models were applied. Results In the RF method, the most important predictive variable for the increment of height standard deviation score (SDS) during the first year of GH treatment was chronologic age (CA) at start of GH treatment. The RF method also showed that the increment of height SDS during the first year was the most important predictor in the increment of height SDS after 3 years of treatment. In a prediction model by multiple regression, younger CA was the significant predictor of height SDS gain during the first year (32.4% of the variability). After 3 years of treatment, mid-parental height (MPH) and the increment of height SDS during the first year were identified as significant predictors (76.6% of the variability). Conclusions Both the machine learning approach and the multiple regression model revealed that younger CA at the start of GH treatment was the most important factor related to height response in patients with TS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Slemon完成签到,获得积分10
1秒前
3秒前
大个应助普鲁卡因采纳,获得10
6秒前
咖啡豆发布了新的文献求助10
7秒前
意志所向完成签到,获得积分10
7秒前
《子非鱼》完成签到,获得积分10
8秒前
缓慢的甜瓜完成签到,获得积分10
10秒前
Llllll完成签到,获得积分10
10秒前
orixero应助梦华老师采纳,获得10
11秒前
大橙子发布了新的文献求助10
12秒前
gaoyang123完成签到 ,获得积分10
12秒前
qwe1108完成签到 ,获得积分10
12秒前
13秒前
jane完成签到 ,获得积分10
16秒前
18秒前
瑾玉完成签到,获得积分10
18秒前
20秒前
Akim应助duckspy采纳,获得10
20秒前
那种完成签到,获得积分10
20秒前
liuyanq完成签到,获得积分20
20秒前
21秒前
普鲁卡因发布了新的文献求助10
22秒前
加油杨完成签到 ,获得积分10
23秒前
liuyanq发布了新的文献求助10
26秒前
随风完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
31秒前
米九完成签到,获得积分10
33秒前
zhao完成签到,获得积分10
36秒前
普鲁卡因发布了新的文献求助10
36秒前
zj完成签到,获得积分10
42秒前
蓝橙完成签到,获得积分10
43秒前
47秒前
GD88完成签到,获得积分10
48秒前
糟糕的梨愁完成签到,获得积分10
49秒前
莫西莫西完成签到 ,获得积分10
50秒前
小趴蔡完成签到 ,获得积分10
52秒前
唐唐发布了新的文献求助10
52秒前
飘逸剑身完成签到,获得积分10
55秒前
airtermis完成签到 ,获得积分10
55秒前
gfasdjsjdsjd完成签到,获得积分10
56秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022