Machine learning-based prediction of response to growth hormone treatment in Turner syndrome: the LG Growth Study

医学 生长激素治疗 特纳综合征 内科学 生长激素 线性回归 回归 回归分析 激素 统计 数学
作者
Mo Kyung Jung,Jeesuk Yu,Ji Eun Lee,Se Young Kim,Hae Soon Kim,Eun-Gyong Yoo
出处
期刊:Journal of Pediatric Endocrinology and Metabolism [De Gruyter]
卷期号:33 (1): 71-78 被引量:9
标识
DOI:10.1515/jpem-2019-0311
摘要

Abstract Background Growth hormone (GH) treatment has become a common practice in Turner syndrome (TS). However, there are only a few studies on the response to GH treatment in TS. The aim of this study is to predict the responsiveness to GH treatment and to suggest a prediction model of height outcome in TS. Methods The clinical parameters of 105 TS patients registered in the LG Growth Study (LGS) were retrospectively reviewed. The prognostic factors for the good responders were identified, and the prediction of height response was investigated by the random forest (RF) method, and also, multiple regression models were applied. Results In the RF method, the most important predictive variable for the increment of height standard deviation score (SDS) during the first year of GH treatment was chronologic age (CA) at start of GH treatment. The RF method also showed that the increment of height SDS during the first year was the most important predictor in the increment of height SDS after 3 years of treatment. In a prediction model by multiple regression, younger CA was the significant predictor of height SDS gain during the first year (32.4% of the variability). After 3 years of treatment, mid-parental height (MPH) and the increment of height SDS during the first year were identified as significant predictors (76.6% of the variability). Conclusions Both the machine learning approach and the multiple regression model revealed that younger CA at the start of GH treatment was the most important factor related to height response in patients with TS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐天发布了新的文献求助10
2秒前
疯狂的炳发布了新的文献求助10
2秒前
3秒前
Owen应助心灵美的修洁采纳,获得10
3秒前
4秒前
解语花发布了新的文献求助10
4秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Espionage完成签到,获得积分10
9秒前
关灯完成签到,获得积分10
11秒前
寸光完成签到,获得积分20
12秒前
szy完成签到,获得积分10
14秒前
科研通AI5应助PINGAN采纳,获得10
14秒前
15秒前
16秒前
16秒前
17秒前
北侨发布了新的文献求助10
17秒前
传奇3应助苹果采纳,获得10
18秒前
yuwen完成签到,获得积分10
19秒前
涵泽发布了新的文献求助10
20秒前
在水一方应助乐天采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517