Abstract 16388: Feature Selection Using Recursive Feature Elimination (RFE): Machine Learning Application in Predicting Permanent Pacemaker Implantation (PPMI) in Patients Undergoing Transcatheter Aortic Valve Replacement (TAVR)

医学 逻辑回归 接收机工作特性 队列 阀门更换 心脏病学 外科 内科学 狭窄
作者
Suleman Ilyas,Wasiq Sheikh,Anshul Parulkar,Malik Bilal Ahmed,Gerry Ovide,Benjamin Rosen,Brian Osler,Fabio V. Lima,Esseim Sharma,Anthony F. Chu
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16388
摘要

Introduction: TAVR is increasingly being performed because of several recent large-scale clinical trials supporting its use across a range of patient sub-classes. Although it provides life-altering relief of severe aortic stenosis, adverse outcomes are not uncommon including paravalvular leak, life-threatening bleeding, acute kidney injury, stroke, and PPMI. RFE can help certain classification models like logistic regression in better predicting binary variables such as PPMI by creating a model based upon a set of predictors and then progressively eliminating variables to optimize the model. Objective: To determine whether RFE when applied to logistic regression would result in discriminatory ability in the prediction of PPM implantation in patients undergoing TAVR Methods: Pre- and postoperative data from a single institution were collected for all patients undergoing TAVR without a history of PPMI between January 2016 and December 2019. EKG data obtained included QRS duration, presence of atrioventricular block, left anterior and posterior fasicular block and right bundle branch block(RBBB). Data was imported into Python and a stratified 5 fold cross validation with SMOTE oversampling was run with RFE running at every fold to avoid overfitting. Upon completion, a rank score was tabulated for each predictor and a final logistic regression model with the highest optimized receiver under the operator curve was exported and applied to a test set. The receiver under the operator score was calculated for the training and test sets and the variables of importance were identified using RFE. Results: The total sample size for this cohort was 513 patients, with a PPMI incidence of 8.58%. The training set consisted of 40 variables and 384 patients, and the test set had 129 patients. The final optimized model on the training set had an ROC of 0.75 and utilized three features out of forty. The three features identified by RFE were: implanted TAVR valve size, QRS duration, and presence of RBBB. The model had a ROC of 0.63 on the test set. Conclusions: Our results show that presence of pre-op RBBB, prolonged QRS duration and valve size were risk factors for PPMI. Logistic regression classification had modest ability in predicting the need for PPMI after TAVR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九三发布了新的文献求助10
1秒前
顾矜应助要减肥的语堂采纳,获得10
2秒前
jj发布了新的文献求助10
3秒前
满天星完成签到,获得积分10
3秒前
ZD完成签到 ,获得积分10
4秒前
撒西不理完成签到,获得积分10
4秒前
5秒前
5秒前
冷酷的松思完成签到,获得积分10
7秒前
科研的神完成签到,获得积分20
7秒前
8秒前
去去去去发布了新的文献求助10
11秒前
in完成签到,获得积分20
11秒前
务实的又柔完成签到,获得积分10
12秒前
万能图书馆应助不想起采纳,获得10
12秒前
乐乐应助jj采纳,获得10
15秒前
旧城旧巷等旧人完成签到 ,获得积分10
16秒前
17秒前
20秒前
mq关注了科研通微信公众号
21秒前
21秒前
fifteen发布了新的文献求助10
22秒前
23秒前
23秒前
不想起发布了新的文献求助10
23秒前
lingdu发布了新的文献求助10
23秒前
佳佳欧巴完成签到 ,获得积分10
25秒前
青天鸟1989完成签到,获得积分10
25秒前
28秒前
宓函发布了新的文献求助10
30秒前
31秒前
32秒前
不想起完成签到,获得积分10
34秒前
ESLG完成签到 ,获得积分10
34秒前
lingdu完成签到,获得积分20
36秒前
37秒前
科研通AI2S应助宓函采纳,获得10
39秒前
寒冷鹏煊发布了新的文献求助10
40秒前
麦麦脆汁狗完成签到,获得积分20
40秒前
Kristin应助引商刻羽采纳,获得10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187