多路复用
寡核苷酸
核糖核酸
计算生物学
分子生物学
生物
基因
生物信息学
遗传学
作者
Christopher R. B. Merritt,Giang T. Ong,S. Church,Kristi Barker,Patrick Danaher,Gary Geiss,Margaret L. Hoang,Jaemyeong Jung,Yan Liang,Jill McKay-Fleisch,Karen Nguyen,Zach Norgaard,Kristina Sorg,Isaac Sprague,Charles Warren,Sarah Warren,Philippa Webster,Zoey Zhou,Daniel R. Zollinger,Dwayne Dunaway,Gordon B. Mills,Joseph Beechem
标识
DOI:10.1038/s41587-020-0472-9
摘要
Digital Spatial Profiling (DSP) is a method for highly multiplex spatial profiling of proteins or RNAs suitable for use on formalin-fixed, paraffin-embedded (FFPE) samples. The approach relies on (1) multiplexed readout of proteins or RNAs using oligonucleotide tags; (2) oligonucleotide tags attached to affinity reagents (antibodies or RNA probes) through a photocleavable (PC) linker; and (3) photocleaving light projected onto the tissue sample to release PC oligonucleotides in any spatial pattern across a region of interest (ROI) covering 1 to ~5,000 cells. DSP is capable of single-cell sensitivity within an ROI using the antibody readout, with RNA detection feasible down to ~600 individual mRNA transcripts. We show spatial profiling of up to 44 proteins and 96 genes (928 RNA probes) in lymphoid, colorectal tumor and autoimmune tissues by using the nCounter system and 1,412 genes (4,998 RNA probes) by using next-generation sequencing (NGS). DSP may be used to profile not only proteins and RNAs in biobanked samples but also immune markers in patient samples, with potential prognostic and predictive potential for clinical decision-making.
科研通智能强力驱动
Strongly Powered by AbleSci AI