Analyzing User-Level Privacy Attack Against Federated Learning

计算机科学 鉴别器 服务器 计算机安全 对抗制 信息隐私 人工智能 机器学习 计算机网络 电信 探测器
作者
Mengkai Song,Zhibo Wang,Zhifei Zhang,Song Yang,Qian Wang,Ju Ren,Hairong Qi
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:38 (10): 2430-2444 被引量:138
标识
DOI:10.1109/jsac.2020.3000372
摘要

Federated learning has emerged as an advanced privacy-preserving learning technique for mobile edge computing, where the model is trained in a decentralized manner by the clients, preventing the server from directly accessing those private data from the clients. This learning mechanism significantly challenges the attack from the server side. Although the state-of-the-art attacking techniques that incorporated the advance of Generative adversarial networks (GANs) could construct class representatives of the global data distribution among all clients, it is still challenging to distinguishably attack a specific client (i.e., user-level privacy leakage), which is a stronger privacy threat to precisely recover the private data from a specific client. To analyze the privacy leakage of federated learning, this paper gives the first attempt to explore user-level privacy leakage by the attack from a malicious server. We propose a framework incorporating GAN with a multi-task discriminator, called multi-task GAN - Auxiliary Identification (mGAN-AI), which simultaneously discriminates category, reality, and client identity of input samples. The novel discrimination on client identity enables the generator to recover user specified private data. Unlike existing works interfering the federated learning process, the proposed method works “invisibly” on the server side. Furthermore, considering the anonymization strategy for mitigating mGAN-AI, we propose a beforehand linkability attack which re-identifies the anonymized updates by associating the client representatives. A novel siamese network fusing the identification and verification models is developed for measuring the similarity of representatives. The experimental results demonstrate the effectiveness of the proposed approaches and the superior to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
康康发布了新的文献求助10
2秒前
友好天空完成签到,获得积分10
2秒前
饼饼完成签到,获得积分10
2秒前
深情安青应助练习者采纳,获得10
3秒前
3秒前
箜芒发布了新的文献求助10
4秒前
6秒前
8812077完成签到,获得积分10
6秒前
WUXIAOJIA发布了新的文献求助10
7秒前
失眠的向日葵完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
jason发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Evelyn完成签到,获得积分10
9秒前
cc小木屋发布了新的文献求助20
11秒前
我爱学术发布了新的文献求助10
11秒前
cherish3232完成签到 ,获得积分10
11秒前
13秒前
14秒前
喜悦的绮露完成签到,获得积分10
14秒前
宜醉宜游宜睡应助威武珊采纳,获得10
16秒前
箜芒完成签到,获得积分10
17秒前
jason完成签到,获得积分10
17秒前
18秒前
练习者发布了新的文献求助10
18秒前
20秒前
20秒前
ding应助我爱学术采纳,获得10
21秒前
几时有完成签到,获得积分20
21秒前
22秒前
24秒前
Oooo发布了新的文献求助10
27秒前
桐桐应助龍越采纳,获得10
27秒前
叉叉茶完成签到 ,获得积分10
27秒前
Daria发布了新的文献求助10
30秒前
情怀应助皮皮采纳,获得50
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143739
求助须知:如何正确求助?哪些是违规求助? 2795236
关于积分的说明 7813804
捐赠科研通 2451222
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400