Doubling the Speed of N200 Speller via Dual-Directional Motion Encoding

脑-机接口 计算机科学 语音识别 运动(物理) 人工智能 脑电图 神经科学 心理学
作者
Dingkun Liu,Chang Liu,Jingjing Chen,Dan Zhang,Bo Hong
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 204-213 被引量:7
标识
DOI:10.1109/tbme.2020.3005518
摘要

Objective: Motion-onset visual evoked potentials (mVEPs)-based spellers, also known as N200 spellers, have been successfully implemented, avoiding flashing stimuli that are common in visual brain-computer interface (BCI). However, their information transfer rates (ITRs), typically below 50 bits/min, are lower than other visual BCI spellers. In this study, we sought to improve the speed of N200 speller to a level above the well-known P300 spellers. Approach: Based on our finding of the spatio-temporal asymmetry of N200 response elicited by leftward and rightward visual motion, a novel dual-directional N200 speller was implemented. By presenting visual stimuli moving in two different directions simultaneously, the new paradigm reduced the stimuli presentation time by half, while ensuring separable N200 features between two visual motion directions. Furthermore, a probability-based dynamic stopping algorithm was also proposed to shorten the decision time for each output further. Both offline and online tests were conducted to evaluate the performance in ten participants. Main results: Offline results revealed contralateral dominant temporal and spatial patterns in N200 responses when subjects attended to stimuli moving leftward or rightward. In online experiments, the dual-directional paradigm achieved an average ITR of 79.8 bits/min, with the highest ITR of 124.8 bits/min. Compared with the traditional uni-directional N200 speller, the median gain on the ITR was 202%. Significance: The proposed dual-directional paradigm managed to double the speed of the N200 speller. Together with its non-flashing characteristics, this dual-directional N200 speller is promising to be a competent candidate for fast and reliable BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
tanzzz应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
时尚数据线完成签到,获得积分10
2秒前
隐形曼青应助yao采纳,获得10
2秒前
helpme发布了新的文献求助10
3秒前
5秒前
huangyi发布了新的文献求助10
6秒前
123完成签到,获得积分10
6秒前
7秒前
8秒前
zll关注了科研通微信公众号
8秒前
隐形曼青应助肉丝采纳,获得10
8秒前
hwzhou10完成签到,获得积分10
9秒前
SciGPT应助李雯婷采纳,获得10
9秒前
科研通AI5应助李雩采纳,获得10
11秒前
111发布了新的文献求助10
11秒前
11秒前
12秒前
April发布了新的文献求助10
16秒前
123发布了新的文献求助10
16秒前
17秒前
鸳鸯士完成签到,获得积分10
19秒前
skier发布了新的文献求助10
23秒前
科研通AI2S应助Rita采纳,获得10
25秒前
甄友谦完成签到,获得积分10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673662
求助须知:如何正确求助?哪些是违规求助? 3229164
关于积分的说明 9784494
捐赠科研通 2939740
什么是DOI,文献DOI怎么找? 1611281
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326